×

Topology optimization of finite strain viscoplastic systems under transient loads. (English) Zbl 07878367

Summary: A transient finite strain viscoplastic model is implemented in a gradient-based topology optimization framework to design impact mitigating structures. The model’s kinematics relies on the multiplicative split of the deformation gradient, and the constitutive response is based on isotropic hardening viscoplasticity. To solve the mechanical balance laws, the implicit Newmark-beta method is used together with a total Lagrangian finite element formulation. The optimization problem is regularized using a partial differential equation filter and solved using the method of moving asymptotes. Sensitivities required to solve the optimization problem are derived using the adjoint method. To demonstrate the capability of the algorithm, several protective systems are designed, in which the absorbed viscoplastic energy is maximized. The numerical examples demonstrate that transient finite strain viscoplastic effects can successfully be combined with topology optimization.
{Copyright © 2018 John Wiley & Sons, Ltd.}

MSC:

74Pxx Optimization problems in solid mechanics
74Bxx Elastic materials
74Cxx Plastic materials, materials of stress-rate and internal-variable type
Full Text: DOI

References:

[1] BuhlT, PedersenCB, SigmundO. Stiffness design of geometrically nonlinear structures using topology optimization. Struct Multidiscip Optim. 2000;19(2):93‐104.
[2] BrunsTE, TortorelliDA. Topology optimization of non‐linear elastic structures and compliant mechanisms. Comput Method Appl Mech Eng. 2001;190:3443‐3459. · Zbl 1014.74057
[3] KlarbringA, StrömbergN. Topology optimization of hyperelastic bodies including non‐zero prescribed displacements. Struct Multidiscip Optim. 2013;47(1):37‐48. https://doi.org/10.1007/s00158-012-0819-z · Zbl 1274.74351 · doi:10.1007/s00158-012-0819-z
[4] WallinM, IvarssonN, RistinmaaM. Large strain phase‐field based multi‐material topology optimization. Int J Numer Methods Eng. 2015;104(9):887‐904. https://doi.org/10.1002/nme.4962 · Zbl 1352.74251 · doi:10.1002/nme.4962
[5] WallinM, IvarssonN, TortorelliD. Stiffness optimization of non‐linear elastic structures. Comput Method Appl Mech Eng. 2018;330:292‐307. https://doi.org/10.1016/j.cma.2017.11.004 · Zbl 1439.74053 · doi:10.1016/j.cma.2017.11.004
[6] BogomolnyM, AmirO. Conceptual design of reinforced concrete structures using topology optimization with elastoplastic material modeling. Int J Numer Methods Eng. 2012;90(13):1578‐1597. · Zbl 1246.74042
[7] NakshatralaP, TortorelliD. Topology optimization for effective energy propagation in rate‐independent elastoplastic material systems. Comput Method Appl Mech Eng. 2015;295:305‐326. https://doi.org/10.1016/j.cma.2015.05.004 · Zbl 1423.74755 · doi:10.1016/j.cma.2015.05.004
[8] KatoJ, HoshibaH, TakaseS, TeradaK, KyoyaT. Analytical sensitivity in topology optimization for elastoplastic composites. Struct Multidiscip Optim. 2015;52(3):507‐526.
[9] LiL, ZhangG, KhandelwalK. Topology optimization of energy absorbing structures with maximum damage constraint. Int J Numer Methods Eng. 2017;112(7):737‐775. https://doi.org/10.1002/nme.5531 · Zbl 07867230 · doi:10.1002/nme.5531
[10] WallinM, JönssonV, WingrenE. Topology optimization based on finite strain plasticity. Struct Multidiscip Optim. 2016;54(4):1‐11.
[11] LiuB, HuangX, HuangC, SunG, YanX, LiG. Topological design of structures under dynamic periodic loads. Eng Struct. 2017;142:128‐136. https://doi.org/10.1016/j.engstruct.2017.03.067 · doi:10.1016/j.engstruct.2017.03.067
[12] AndreassenE, FerrariF, SigmundO, DiazAR. Frequency response as a surrogate eigenvalue problem in topology optimization. Int J Numer Methods Eng. 2017;113(8):1214‐1229. https://doi.org/10.1002/nme.5563 · Zbl 07874750 · doi:10.1002/nme.5563
[13] NiuB, YanJ, ChengG. Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency. Struct Multidiscip Optim. 2008;39(2):115. https://doi.org/10.1007/s00158-008-0334-4 · doi:10.1007/s00158-008-0334-4
[14] MinS, KikuchiN, ParkYC, KimS, ChangS. Optimal topology design of structures under dynamic loads. Struct Optim. 1999;17(2):208‐218.
[15] ZhaoJ, WangC. Topology optimization for minimizing the maximum dynamic response in the time domain using aggregation functional method. Comput Struct. 2017;190:41‐60. https://doi.org/10.1016/j.compstruc.2017.05.002 · doi:10.1016/j.compstruc.2017.05.002
[16] JamesKA, WaismanH. Topology optimization of viscoelastic structures using a time‐dependent adjoint method. Comput Method Appl Mech Eng. 2015;285:166‐187. · Zbl 1423.74728
[17] MichalerisP, TortorelliDA, VidalCA. Tangent operators and design sensitivity formulations for transient non‐linear coupled problems with applications to elastoplasticity. Int J Numer Methods Eng. 1994;37(14):2471‐2499. · Zbl 0808.73057
[18] SimoJC, MieheC. Associative coupled thermoplasticity at finite strains: formulation, numerical analysis and implementation. Comput Method Appl Mech Eng. 1992;98:41‐104. · Zbl 0764.73088
[19] RistinmaaM, OttosenNS. Consequences of dynamic yield surface in viscoplasticity. Int J Solid Struct. 2000;37(33):4601‐4622. https://doi.org/10.1016/S0020-7683(99)00158-4 · Zbl 0982.74014 · doi:10.1016/S0020-7683(99)00158-4
[20] BelytschkoT, LiuW, MoranB. Nonlinear Finite Elements for Continua and Structures. Chichester, UK:Wiley; 2000. · Zbl 0959.74001
[21] BatheKJ. Finite Element Precedures. Upper Saddle River, NJ: Prentice Hall; 1996.
[22] KulkarniD, TortorelliD, WallinM. Schur’s complement approach in computational plasticity. Comput Method Appl Mech Eng. 2007;196:1169‐1177. · Zbl 1173.74474
[23] SimoJC, HughesTJR. Computational Inelasticity. New York, NY: Springer; 1998. · Zbl 0934.74003
[24] LazarovBS, SigmundO. Filters in topology optimization based on Helmholtz‐type differential equations. Int J Numer Methods Eng. 2011;86(6):765‐781. https://doi.org/10.1002/nme.3072 · Zbl 1235.74258 · doi:10.1002/nme.3072
[25] GuestJK, PrévostJH, BelytschkoT. Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng. 2004;61(2):238‐254. · Zbl 1079.74599
[26] WangF, LazarovBS, SigmundO, JensenJS. Interpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problems. Comput Method Appl Mech Eng. 2014;276:453‐472. · Zbl 1423.74768
[27] StolpeM, SvanbergK. An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidiscip Optim. 2001;22:116‐124.
[28] SvanbergK. The method of moving asymptotes: a new method for structural optimization. Int J Numer Methods Eng. 1987;24:359‐373. · Zbl 0602.73091
[29] SvanbergK. A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim. 2002;12(2):555‐573. · Zbl 1035.90088
[30] BorgqvistE, WallinM. Numerical integration of elasto‐plasticity coupled to damage using a diagonal implicit Runge‐Kutta integration scheme. Int J Damage Mech. 2013;22:68‐94.
[31] MauteK, SchwarzS, RammE. Adaptive topology optimization of elastoplastic structures. Struct Optim. 1998;15(2):81‐91.
[32] GuoL, TovarA, PenningerCL, RenaudJE. Strain‐based topology optimisation for crashworthiness using hybrid cellular automata. Int J Crashworthiness. 2011;16(3):239‐252.
[33] PatelNM, KangBS, RenaudJE, TovarA. Crashworthiness design using topology optimization. J Mech Des. 2009;131(6):061‐013.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.