×

Structural boundary design via level set and immersed interface methods. (English) Zbl 0994.74082

Summary: We develop and test an algorithmic approach to the boundary design of elastic structures. The goal of our approach is two-fold: first, to develop a method which allows one to rapidly solve two-dimensional Lamé equations in arbitrary domains and compute, for example, stresses; second, to develop a systematic way of modifying the design to optimize chosen properties. At the core, our approach relies on two distinct steps. Given a design, we first apply an explicit jump immersed interface method to compute stresses for a given design shape. We then use a narrow band level set method to perturb this shape, and progress towards an improved design. The equations of two-dimensional linear elastostatics in the displacement formulation on arbitrary domains are solved quickly by domain embedding and by the use of fast elastostatic solvers. This effectively reduces the dimensionality of the problem by one. Once the stresses are found, the level set method, which represents the design structure through an embedded implicit function, is used at the second step to alter the shape, with velocities depending on stresses in the current design. We provide criteria for advancing the shape in an appropriate direction, and for correcting the evolving shape when given constraints are violated.

MSC:

74S30 Other numerical methods in solid mechanics (MSC2010)
74B05 Classical linear elasticity
74P99 Optimization problems in solid mechanics

Software:

ESOFRAME
Full Text: DOI

References:

[1] Adalsteinsson, D.; Sethian, J. A., A fast level set method for propagating interfaces, J. Comput. Phys., 118, 269 (1995) · Zbl 0823.65137
[2] Adalsteinsson, D.; Sethian, J. A., The fast construction of extension velocities in level set methods, J. Comput. Phys., 148, 2 (1999) · Zbl 0919.65074
[3] G. Allaire, The homogenization method for topology and shape optimization, in G. I. N. Rozvany Ed., Topology Optimization in Structural MechanicsCISM, 1997, p. 101.; G. Allaire, The homogenization method for topology and shape optimization, in G. I. N. Rozvany Ed., Topology Optimization in Structural MechanicsCISM, 1997, p. 101. · Zbl 0885.73049
[4] Allaire, G.; Kohn, R. V., Optimal design for minimum weight and compliance using extremal microstructures, Eur. J. Mech. A/Solids, 12, 839 (1993) · Zbl 0794.73044
[5] G. Allaire and R. V. Kohn, Topology optimization and optimal shape design using homogenization. in M. P. Bendsøe and C. A. Mota Soares Eds., Topology Design of Structures, volume 227 of NATO ASI Series, Series EKluwer, 1993, p. 207.; G. Allaire and R. V. Kohn, Topology optimization and optimal shape design using homogenization. in M. P. Bendsøe and C. A. Mota Soares Eds., Topology Design of Structures, volume 227 of NATO ASI Series, Series EKluwer, 1993, p. 207.
[6] Bendsøe, M. P., Optimization of Structural Topology, Shape and Material (1997)
[7] Bendsøe, M. P.; Haber, R., The Michell layout problem as a low volume fraction limit of the homogenization method for topology design: An asymptotic study, J. Struct. Optimization, 6, 263 (1993)
[8] Bendsøe, M. P.; Kikuchi, N., Generating optimal topologies in structural design using a homogenisation method, Comput. Methods Appl. Mech. Eng., 71, 197 (1988) · Zbl 0671.73065
[9] Buzbee, B. L.; Dorr, F. W.; George, J. A.; Golub, G. H., The direct solution of the discrete Poisson equation on irregular regions, SIAM J. Numer. Anal., 8, 722 (1971) · Zbl 0231.65083
[10] Chen, S.; Merriman, B.; Osher, S.; Smereka, P., A simple level set method for solving stefan problems, J. Comput. Phys., 138, 8 (1997) · Zbl 0889.65133
[11] Chopp, D. L., Computing minimal surfaces via level set curvature flow, J. Comput. Phys., 106, 77 (1993) · Zbl 0786.65015
[12] Eschenauer, H. A.; Kobelev, H. A.; Schumacher, A., Bubble method for topology and shape optimization of structures, J. Struct. Optimization, 8, 142 (1994)
[13] H. A. Eschenauer and A. Schumacher, Topology and shape optimization procedures using hole positioning criteria, in G. I. N. Rozvany Ed., Topology Optimization in Structural MechanicsCISM, 1997, p. 135.; H. A. Eschenauer and A. Schumacher, Topology and shape optimization procedures using hole positioning criteria, in G. I. N. Rozvany Ed., Topology Optimization in Structural MechanicsCISM, 1997, p. 135. · Zbl 0885.73050
[14] LeVeque, R. J.; Li, Z., The immersed interface method for elliptic equations with discontinuous coefficients and singular sources, SIAM J. Numer. Anal., 31, 1019 (1994) · Zbl 0811.65083
[15] Li, Z., A fast iterative algorithm for elliptic interface problems, SIAM J. Numer. Anal., 35, 230 (1998) · Zbl 0915.65121
[16] Li, Z.; Zhao, H.; Gao, H., A numerical study of electron-migration voiding by evolving level set functions on a fixed cartesian grid, J. Comput. Phys., 152, 281 (1999) · Zbl 0956.78016
[17] Lorentz, R. A., Multivariate Birkhoff Interpolation (1992) · Zbl 0760.41002
[18] Murnaghan, F. D., Finite Deformation of an Elastic Solid (1951) · Zbl 0045.26504
[19] Osher, S. J.; Sethian, J. A., Fronts propagating with curvature dependent speed: Algorithms based on the Hamilton-Jacobi formulation, J. Comput. Phys., 79, 12 (1988) · Zbl 0659.65132
[20] Proskurowski, W.; Widlund, O., On the numerical solution of Helmholtz’s Equation by the capacitance matrix method, Math. Comp., 30, 433 (1976) · Zbl 0332.65057
[21] Reynolds, D.; McConnachie, J.; Bettess, P.; Christie, W. C.; Bull, J. W., Reverse adaptivity—A new evolutionary tool for structural optimization, Int. J. Numer. Meth. Engng., 45, 529 (1999) · Zbl 0949.74053
[22] Rozvany, G. I.N.; Bendsøe, M. P.; Kirsch, U., Layout optimisation of structures, Appl. Mech. Rev., 48, 41 (1995)
[23] Saad, Y.; Schultz, M. H., GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 7, 856 (1986) · Zbl 0599.65018
[24] Sethian, J. A., An Analysis of Flame Propagation (1982)
[25] Sethian, J. A., Curvature and the evolution of fronts, Comm. Math. Phys., 101, 487 (1985) · Zbl 0619.76087
[26] J. A. Sethian, Numerical methods for propagating fronts, in, Variational Methods for Free Surface Interfaces, edited by, Concus and Finn, Proceedings of the 1985 Vallambrosa Conference, Springer-Verlag, NY, 1987, p, 155.; J. A. Sethian, Numerical methods for propagating fronts, in, Variational Methods for Free Surface Interfaces, edited by, Concus and Finn, Proceedings of the 1985 Vallambrosa Conference, Springer-Verlag, NY, 1987, p, 155. · Zbl 0618.65128
[27] Sethian, J. A., A fast marching level set method for monotonically advancing fronts, Proc. Nat. Acad. Sci., 93, 1591 (1996) · Zbl 0852.65055
[28] Sethian, J. A., Level Set Methods: Evolving Interfaces in Geometry, Fluid Mechanics, Computer Vision, and Material Science (1996) · Zbl 0859.76004
[29] Sethian, J. A., Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Sciences (1999) · Zbl 0973.76003
[30] J. A. Sethian, and, A. Wiegmann, Construction of efficient designs through evolving interfaces, Int. J. Numer. Meth. Engng, in press.; J. A. Sethian, and, A. Wiegmann, Construction of efficient designs through evolving interfaces, Int. J. Numer. Meth. Engng, in press.
[31] Timoshenko, S., Theory of Elasticity (1970) · JFM 60.1350.01
[32] van der Vorst, H. A., Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems, SIAM J. Sci. Statist. Comput., 13, 631 (1992) · Zbl 0761.65023
[33] Wiegmann, A., The Explicit-Jump Immersed Interface Method and Interface Problems for Differential Equations (1998)
[34] Wiegmann, A., Fast Poisson, fast Helmholtz and fast linear elastostatic solvers on rectangular parallelepipeds, SIAM J. Sci. Comput. (1999)
[35] A. Wiegmann, Improved scaling in 2D and 3D for reflection based fast solvers (1999), in preparation.; A. Wiegmann, Improved scaling in 2D and 3D for reflection based fast solvers (1999), in preparation.
[36] A. Wiegmann, and, K. P. Bube, The explicit-jump immersed interface method: finite difference methods for PDE with piecewise smooth solutions, SIAM J. Numer. Anal, in press.; A. Wiegmann, and, K. P. Bube, The explicit-jump immersed interface method: finite difference methods for PDE with piecewise smooth solutions, SIAM J. Numer. Anal, in press. · Zbl 0948.65107
[37] Xie, Y. M.; Steven, G. P., Evolutionary Structural Optimization (1997) · Zbl 0898.73003
[38] Yang, Z., A Cartesian Grid Method for Elliptic Boundary Value Problems in Irregular Regions (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.