×

Computational design of finite strain auxetic metamaterials via topology optimization and nonlinear homogenization. (English) Zbl 1441.74181

Summary: A novel computational framework for designing metamaterials with negative Poisson’s ratio over a large strain range is presented in this work by combining the density-based topology optimization together with a mixed stress/deformation driven nonlinear homogenization method. A measure of Poisson’s ratio based on the macro deformations is proposed, which is further validated through direct numerical simulations. With the consistent optimization formulations based on nonlinear homogenization, auxetic metamaterial designs with respect to different loading orientations and with different unit cell domains are systematically explored. In addition, the extension to multimaterial auxetic metamaterial designs is also considered, and stable optimization formulations are presented to obtain discrete metamaterial topologies under finite strains. Various new auxetic designs are obtained based on the proposed framework. To validate the performance of optimized designs, a multiscale stability analysis is carried out using the Bloch analysis and rank-one convexity check. As demonstrated, short and/or long wavelength instabilities can occur during the loading process, leading to a change of periodicity of the microstructure, which can affect the performance of an optimized design.

MSC:

74P15 Topological methods for optimization problems in solid mechanics
74Q05 Homogenization in equilibrium problems of solid mechanics

References:

[1] Fleck, N. A.; Deshpande, V. S.; Ashby, M. F., Micro-architectured materials: past, present and future, Proc. R. Soc. A, 466, 2495-2516 (2010)
[2] Yu, X.; Zhou, J.; Liang, H.; Jiang, Z.; Wu, L., Mechanical metamaterials associated with stiffness, rigidity and compressibility: A brief review, Prog. Mater. Sci., 94, 114-173 (2018)
[3] Bauer, J.; Meza, L. R.; Schaedler, T. A.; Schwaiger, R.; Zheng, X.; Valdevit, L., Nanolattices: An emerging class of mechanical metamaterials, Adv. Mater., 29, Article 1701850 pp. (2017)
[4] Evans, K. E.; Nkansah, M. A.; Hutchinson, I. J.; Rogers, S. C., Molecular network design, Nature, 353, 124 (1991)
[5] Robert, F. A., An isotropic three-dimensional structure with Poisson’s ratio =-1, J. Elasticity, 15, 427-430 (1985)
[6] Lakes, R., Foam structures with a negative Poisson’s ratio, Science, 235, 1038-1040 (1987)
[7] Saxena, K. K.; Das, R.; Calius, E. P., Three decades of auxetics research – materials with negative Poisson’s ratio: A review, Adv. Energy Mater., 18, 1847-1870 (2016)
[8] Wan, H.; Ohtaki, H.; Kotosaka, S.; Hu, G., A study of negative Poisson’s ratios in auxetic honeycombs based on a large deflection model, Eur. J. Mech. A Solids, 23, 95-106 (2004) · Zbl 1059.74513
[9] Alderson, A.; Alderson, K. L.; Attard, D.; Evans, K. E.; Gatt, R.; Grima, J. N.; Miller, W.; Ravirala, N.; Smith, C. W.; Zied, K., Elastic constants of 3-, 4- and 6-connected chiral and anti-chiral honeycombs subject to uniaxial in-plane loading, Compos. Sci. Technol., 70, 1042-1048 (2010)
[10] Grima, J. N.; Alderson, A.; Evans, K. E., Auxetic behaviour from rotating rigid units, Phys. Status Solidi (b), 242, 561-575 (2005)
[11] Lakes, R. S., Negative-Poisson’s-ratio materials: Auxetic solids, Annu. Rev. Mater. Res., 47, 63-81 (2017)
[12] Bendsøe, M. P.; Kikuchi, N., Generating optimal topologies in structural design using a homogenization method, Comput. Methods Appl. Mech. Engrg., 71, 197-224 (1988) · Zbl 0671.73065
[13] Zhang, G.; Khandelwal, K., Design of dissipative multimaterial viscoelastic-hyperelastic systems at finite strains via topology optimization, Internat. J. Numer. Methods Engrg. (2019)
[14] Alberdi, R.; Khandelwal, K., Bi-material topology optimization for energy dissipation with inertia and material rate effects under finite deformations, Finite Elem. Anal. Des., 164, 18-41 (2019)
[15] Li, L.; Zhang, G.; Khandelwal, K., Failure resistant topology optimization of structures using nonlocal elastoplastic-damage model, Struct. Multidiscip. Optim., 58, 1589-1618 (2018)
[16] Zhang, G.; Li, L.; Khandelwal, K., Topology optimization of structures with anisotropic plastic materials using enhanced assumed strain elements, Struct. Multidiscip. Optim., 55, 1965-1988 (2017)
[17] Ivarsson, N.; Wallin, M.; Tortorelli, D., Topology optimization of finite strain viscoplastic systems under transient loads, Internat. J. Numer. Methods Engrg., 114, 1351-1367 (2018) · Zbl 07878367
[18] James, K. A.; Waisman, H., On the importance of viscoelastic response consideration in structural design optimization, Opt. Eng., 17, 631-650 (2016) · Zbl 1364.74077
[19] Sigmund, O., Materials with prescribed constitutive parameters: An inverse homogenization problem, Int. J. Solids Struct., 31, 2313-2329 (1994) · Zbl 0946.74557
[20] Sigmund, O., Design of Material Structures using Topology Optimization (1994), Technical University of Denmark Denmark, (Ph.D Thesis) · Zbl 1116.74407
[21] Sigmund, O.; Torquato, S., Design of materials with extreme thermal expansion using a three-phase topology optimization method, J. Mech. Phys. Solids, 45, 1037-1067 (1997)
[22] Gibiansky, L. V.; Sigmund, O., Multiphase composites with extremal bulk modulus, J. Mech. Phys. Solids, 48, 461-498 (2000) · Zbl 0989.74060
[23] Huang, X.; Radman, A.; Xie, Y. M., Topological design of microstructures of cellular materials for maximum bulk or shear modulus, Comput. Mater. Sci., 50, 1861-1870 (2011)
[24] Sigmund, O.; Jensen, J. S., Systematic design of phononic band-gap materials and structures by topology optimization, Phil. Trans. R. Soc. A, 361, 1001-1019 (2003) · Zbl 1067.74053
[25] Yi, Y.-M.; Park, S.-H.; Youn, S.-K., Design of microstructures of viscoelastic composites for optimal damping characteristics, Int. J. Solids Struct., 37, 4791-4810 (2000) · Zbl 1007.74066
[26] Alberdi, R.; Khandelwal, K., Design of periodic elastoplastic energy dissipating microstructures, Struct. Multidiscip. Optim., 59, 461-483 (2019)
[27] Nakshatrala, P. B.; Tortorelli, D. A.; Nakshatrala, K. B., Nonlinear structural design using multiscale topology optimization. Part I: Static formulation, Comput. Methods Appl. Mech. Engrg., 261-262, 167-176 (2013) · Zbl 1286.74077
[28] Kato, J.; Yachi, D.; Kyoya, T.; Terada, K., Micro-macro concurrent topology optimization for nonlinear solids with a decoupling multiscale analysis, Internat. J. Numer. Methods Engrg., 113, 1189-1213 (2018) · Zbl 07874749
[29] Wang, F.; Sigmund, O.; Jensen, J. S., Design of materials with prescribed nonlinear properties, J. Mech. Phys. Solids, 69, 156-174 (2014)
[30] Hill, R., On constitutive macro-variables for heterogeneous solids at finite strain, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 326, 131-147 (1972) · Zbl 0229.73004
[31] Castañeda, P. P., Exact second-order estimates for the effective mechanical properties of nonlinear composite materials, J. Mech. Phys. Solids, 44, 827-862 (1996) · Zbl 1054.74708
[32] Saeb, S.; Steinmann, P.; Javili, A., Aspects of computational homogenization at finite deformations: A unifying review from reuss’ to voigt’s bound, Appl. Mech. Rev., 68, 050801-050833 (2016)
[33] Geymonat, G.; Müller, S.; Triantafyllidis, N., Homogenization of nonlinearly elastic materials, microscopic bifurcation and macroscopic loss of rank-one convexity, Arch. Ration. Mech. Anal., 122, 231-290 (1993) · Zbl 0801.73008
[34] Triantafyllidis, N.; Nestorović, M. D.; Schraad, M. W., Failure surfaces for finitely strained two-phase periodic solids under general in-plane loading, J. Appl. Mech., 73, 505-515 (2005) · Zbl 1111.74666
[35] de Souza Neto, E. A.; Blanco, P. J.; Sánchez, P. J.; Feijóo, R. A., An RVE-based multiscale theory of solids with micro-scale inertia and body force effects, Mech. Mater., 80, 136-144 (2015)
[36] Miehe, C., Strain-driven homogenization of inelastic microstructures and composites based on an incremental variational formulation, Internat. J. Numer. Methods Engrg., 55, 1285-1322 (2002) · Zbl 1027.74056
[37] Mandel, J., (Plasticité Classique et Viscoplasticité. Plasticité Classique et Viscoplasticité, CISM Lecture Notes, vol. 97 (1972), Springer-Verlag: Springer-Verlag Wien) · Zbl 0285.73018
[38] Pham, K.; Kouznetsova, V. G.; Geers, M. G.D., Transient computational homogenization for heterogeneous materials under dynamic excitation, J. Mech. Phys. Solids, 61, 2125-2146 (2013) · Zbl 1325.74125
[39] Zhang, G.; Alberdi, R.; Khandelwal, K., Topology optimization with incompressible materials under small and finite deformations using mixed u/p elements, Internat. J. Numer. Methods Engrg., 115, 1015-1052 (2018) · Zbl 07865135
[40] Bourdin, B., Filters in topology optimization, Internat. J. Numer. Methods Engrg., 50, 2143-2158 (2001) · Zbl 0971.74062
[41] Bruns, T. E.; Tortorelli, D. A., Topology optimization of non-linear elastic structures and compliant mechanisms, Comput. Methods Appl. Mech. Engrg., 190, 3443-3459 (2001) · Zbl 1014.74057
[42] Wang, F.; Lazarov, B. S.; Sigmund, O.; Jensen, J. S., Interpolation scheme for fictitious domain techniques and topology optimization of finite strain elastic problems, Comput. Methods Appl. Mech. Engrg., 276, 453-472 (2014) · Zbl 1423.74768
[43] de Souza Neto, E. A.; Perić, D.; Dutko, M.; Owen, D. R.J., Design of simple low order finite elements for large strain analysis of nearly incompressible solids, Int. J. Solids Struct., 33, 3277-3296 (1996) · Zbl 0929.74102
[44] Alberdi, R.; Zhang, G.; Li, L.; Khandelwal, K., A unified framework for nonlinear path-dependent sensitivity analysis in topology optimization, Internat. J. Numer. Methods Engrg., 115, 1-56 (2018) · Zbl 07864826
[45] Svanberg, K., The method of moving asymptotes—a new method for structural optimization, Internat. J. Numer. Methods Engrg., 24, 359-373 (1987) · Zbl 0602.73091
[46] Dassault-Systèmes, Abaqus User Manual (Ver 6.14-2), (2014).; Dassault-Systèmes, Abaqus User Manual (Ver 6.14-2), (2014).
[47] Guest, J. K.; Prévost, J. H.; Belytschko, T., Achieving minimum length scale in topology optimization using nodal design variables and projection functions, Internat. J. Numer. Methods Engrg., 61, 238-254 (2004) · Zbl 1079.74599
[48] Braibant, V.; Fleury, C., Shape optimal design using B-splines, Comput. Methods Appl. Mech. Engrg., 44, 247-267 (1984) · Zbl 0525.73104
[49] Cho, S.; Ha, S.-H., Isogeometric shape design optimization: exact geometry and enhanced sensitivity, Struct. Multidiscip. Optim., 38, 53 (2008) · Zbl 1274.74221
[50] Wall, W. A.; Frenzel, M. A.; Cyron, C., Isogeometric structural shape optimization, Comput. Methods Appl. Mech. Engrg., 197, 2976-2988 (2008) · Zbl 1194.74263
[51] Triantafyllidis, N.; Schraad, M. W., Onset of failure in aluminum honeycombs under general in-plane loading, J. Mech. Phys. Solids, 46, 1089-1124 (1998) · Zbl 0973.74072
[52] Ball, J. M., Convexity conditions and existence theorems in nonlinear elasticity, Arch. Ration. Mech. Anal., 63, 337-403 (1976) · Zbl 0368.73040
[53] Triantafyllidis, N.; Maker, B. N., On the comparison between microscopic and macroscopic instability mechanisms in a class of fiber-reinforced composites, J. Appl. Mech., 52, 794-800 (1985) · Zbl 0586.73112
[54] Hill, R., A general theory of uniqueness and stability in elastic – plastic solids, J. Mech. Phys. Solids, 6, 236-249 (1958) · Zbl 0091.40301
[55] Kittel, C.; McEuen, P., Introduction To Solid State Physics (1996), Wiley New York
[56] Alberdi, R.; Zhang, G.; Khandelwal, K., A framework for implementation of RVE-based multiscale models in computational homogenization using isogeometric analysis, Internat. J. Numer. Methods Engrg., 114, 1018-1051 (2018) · Zbl 07878395
[57] Santisi d’Avila, M. P.; Triantafyllidis, N.; Wen, G., Localization of deformation and loss of macroscopic ellipticity in microstructured solids, J. Mech. Phys. Solids, 97, 275-298 (2016)
[58] Ortiz, M.; Leroy, Y.; Needleman, A., A finite element method for localized failure analysis, Comput. Methods Appl. Mech. Engrg., 61, 189-214 (1987) · Zbl 0597.73105
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.