×

On the transmission eigenvalue problem for the acoustic equation with a negative index of refraction and a practical numerical reconstruction method. (English) Zbl 1401.78010

The paper under review deals with two-dimensional Maxwell equations with transverse magnetic mode in pseudo-chiral media. The analysis is carried out on the acoustic equation with a negative index of refraction. The authors are first concerned with the transmission eigenvalue problem for this equation. By the continuous finite element method, the reduced equation is discretized and the analysis is transformed to a quadratic eigenvalue problem by deflating all nonphysical zeros. Next, the authors establish a numerical method to reconstruct the support of the inhomogeneity by the near-field measurements. The truncated singular value decomposition is proposed to solve the ill-posed near-field integral equation, at one wave number which is not a transmission eigenvalue. This method produces different jumps for the sampling points inside and outside the support. Some numerical simulations illustrate some of the results established in this paper.

MSC:

78A46 Inverse problems (including inverse scattering) in optics and electromagnetic theory
35R30 Inverse problems for PDEs
78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory
35P15 Estimates of eigenvalues in context of PDEs
35Q60 PDEs in connection with optics and electromagnetic theory
76Q05 Hydro- and aero-acoustics
65F20 Numerical solutions to overdetermined systems, pseudoinverses

Software:

Algorithm 922

References:

[1] F. Cakoni and D. Colton, Qualitative Methods in Inverse Scattering Theory: An Introduction, Interaction of Mechanics and Mathematics. Springer-Verlag, Berlin, 2006. · Zbl 1099.78008
[2] F. Cakoni; D. Colton; H. Haddar, On the determination of Dirichlet or transmission eigenvalues from far field data, C. R. Math. Acad. Sci. Pairs, 348, 379-383 (2010) · Zbl 1189.35204 · doi:10.1016/j.crma.2010.02.003
[3] F. Cakoni, D. Colton, P. Monk and J. Sun, The inverse electromagnetic scattering problem for anisotropic media, Inv. Prob., 26 (2010), 074004, 14pp. · Zbl 1197.35314
[4] F. Cakoni; D. Gintides; H. Haddar, The existence of an infinite discrete set of transmission eigenvalues, SIAM J. Math. Anal., 42, 237-255 (2010) · Zbl 1210.35282 · doi:10.1137/090769338
[5] F. Cakoni; H. Haddar, On the existence of transmission eigenvalues in an inhomogeneous medium, Appl. Anal., 88, 475-493 (2009) · Zbl 1168.35448 · doi:10.1080/00036810802713966
[6] F. Cakoni and H. Haddar, Transmission eigenvalues in inverse scattering theory, in Inverse Problems and Applications: Inside Out II (ed. G. Uhlmann), vol. 60 of Math. Sci. Res. Inst. Publ., Cambridge University Press, Cambridge, 2013,527-580. · Zbl 1316.35297
[7] D. Colton; H. Haddar, An application of the reciprocity gap functional to inverse scattering theory, Inv. Prob., 21, 383-398 (2005) · Zbl 1086.35129 · doi:10.1088/0266-5611/21/1/023
[8] D. Colton; A. Kirsch, A simple method for solving inverse scattering problems in the resonance region, Inv. Prob., 12, 383-393 (1996) · Zbl 0859.35133 · doi:10.1088/0266-5611/12/4/003
[9] D. Colton and R. Kress, Inverse Acoustic and Electromagnetic Scattering Theory, vol. 93 of Applied Mathematical Sciences, 3rd edition, Springer, New York, 2013. · Zbl 1266.35121
[10] D. Colton; P. Monk, A novel method for solving the inverse scattering problem for time-harmonic acoustic waves in the resonance region, SIAM J. Appl. Math., 45, 1039-1053 (1985) · Zbl 0588.76140 · doi:10.1137/0145064
[11] D. Colton, P. Monk and J. Sun, Analytical and computational methods for transmission eigenvalues, Inv. Prob., 26 (2010), 045011, 16pp. · Zbl 1192.78024
[12] D. Colton; L. Päivärinta; J. Sylvester, The interior transmission problem, Inv. Prob. Imaging, 1, 13-28 (2007) · Zbl 1130.35132 · doi:10.3934/ipi.2007.1.13
[13] P. Hansen, Discrete Inverse Problems: Insight and Algorithms, SIAM, Philadelphia, PA, 2010. · Zbl 1197.65054
[14] G. C. Hsiao; F. Liu; J. Sun; L. Xu, A coupled BEM and FEM for the interior transmission problem in acoustics, J. Comput. Appl. Math., 235, 5213-5221 (2011) · Zbl 1256.76048 · doi:10.1016/j.cam.2011.05.011
[15] T.-M. Huang; W.-Q. Huang; W.-W. Lin, A robust numerical algorithm for computing Maxwell’s transmission eigenvalue problems, SIAM J. Sci. Comput., 37, A2403-A2423 (2015) · Zbl 1408.78005 · doi:10.1137/15M1018927
[16] T.-M. Hwang; W.-W. Lin; W.-C. Wang; W. Wang, Numerical simulation of three dimensional pyramid quantum dot, J. Comput. Phys., 196, 208-232 (2004) · Zbl 1053.81018 · doi:10.1016/j.jcp.2003.10.026
[17] X. Ji, J. Sun and T. Turner, Algorithm 922: A mixed finite element method for Helmholtz transmission eigenvalues, ACM Trans. Math. Software, 38 (2012), Art. 29, 8 pp. · Zbl 1365.65255
[18] X. Ji; J. Sun; H. Xie, A multigrid method for Helmholtz transmission eigenvalue problems, J. Sci. Comput., 60, 276-294 (2014) · Zbl 1305.65225 · doi:10.1007/s10915-013-9794-9
[19] M. Kilmer; D. O’leary, Choosing regularization parameters in iterative methods for ill-posed problems, SIAM J. Matrix Anal. Appl., 22, 1204-1221 (2001) · Zbl 0983.65056 · doi:10.1137/S0895479899345960
[20] A. Kirsch, On the existence of transmission eigenvalues, Inv. Prob. Imaging, 3, 155-172 (2009) · Zbl 1186.35122 · doi:10.3934/ipi.2009.3.155
[21] A. Kirsch and N. Grinberg, The Factorization Method for Inverse Problems, vol. 36 of Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2008. · Zbl 1222.35001
[22] A. Kleefeld, Numerical Methods for Acoustic and Electromagnetic Scattering: Transmission Boundary-Value Problems, Interior Transmission Eigenvalues, and the Factorization Method, Habilitation Thesis, 2015.
[23] T. Li, T. M. Huang, W. W. Lin and J. N. Wang, An efficient numerical algorithm for computing densely distributed positive interior transmission eigenvalues, Inv. Prob., 33 (2017), 035009, 21pp. · Zbl 1366.78021
[24] T. Li; W.-Q. Huang; W.-W. Lin; J. Liu, On spectral analysis and a novel algorithm for transmission eigenvalue problems, J. Sci. Comput., 64, 83-108 (2015) · Zbl 1327.65227 · doi:10.1007/s10915-014-9923-0
[25] L. Päivärinta; J. Sylvester, Transmission eigenvalues, SIAM J. Math. Anal., 40, 738-753 (2008) · Zbl 1159.81411 · doi:10.1137/070697525
[26] A. Serdyukov, I. Semchenko, S. Tretyakov and A. Sihvola, Electromagnetics of Bi-anisotropic Materials: Theory and Applications, Gordon and Breach Science, 2001.
[27] J. Sun, Estimation of transmission eigenvalues and the index of refraction from cauchy data, Inv. Prob., 27 (2010), 015009, 11pp. · Zbl 1208.35176
[28] J. Sun, Iterative methods for transmission eigenvalues, SIAM J. Numer. Anal., 49, 1860-1874 (2011) · Zbl 1245.65153 · doi:10.1137/100785478
[29] J. Sun, An eigenvalue method using multiple frequency data for inverse scattering problems, Inv. Prob., 28(2) (2012), 025012, 15pp. · Zbl 1234.35162
[30] J. Sun and A. Zhou, Finite Element Methods for Eigenvalue Problems, Boca Raton: CRC Press, 2017. · Zbl 1351.65085
[31] A. Tikhonov and V. Arsenin, Solutions of Ill-Posed Problems, Winston Sons, Washington, D. C., 1977. · Zbl 0354.65028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.