×

On spectral analysis and a novel algorithm for transmission eigenvalue problems. (English) Zbl 1327.65227

The paper provides a spectral analysis and proposes a novel iterative algorithm for the computation of a few positive real eigenvalues and the corresponding eigenfunctions of the transmission eigenvalue problem. Based on approximation using continuous finite elements, the authors derive an associated symmetric quadratic eigenvalue problem (QEP) for the transmission eigenvalue problem to eliminate the nonphysical zero eigenvalues while preserve all nonzero ones. Then the QEP is transformed to a parameterized symmetric definite generalized eigenvalue problem (GEP) and a secant-type iteration for solving the resulting GEPs is developed. Moreover, the spectral analysis is carried out for various existence intervals of desired positive real eigenvalues, since a few lowest positive real transmission eigenvalues are of practical interest in the estimation and the reconstruction of the index of refraction. Numerical experiments show that the proposed method can find those desired smallest positive real transmission eigenvalues accurately, efficiently, and robustly.

MSC:

65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35P15 Estimates of eigenvalues in context of PDEs
Full Text: DOI

References:

[1] Bai, Z., Demmel, J., Dongarra, J., Ruhe, A., van der Vorst, H.: Templates for the Solution of algebraic eigenvalue problems: a practical guide. SIAM, Philadelphia, PA (2000) · Zbl 0965.65058 · doi:10.1137/1.9780898719581
[2] Cakoni, F., Çayören, M., Colton, D.: Transmission eigenvalues and the nondestructive testing of dielectrics. Inverse Probl. 24(6), 065016 (2008) · Zbl 1157.35497 · doi:10.1088/0266-5611/24/6/065016
[3] Cakoni, F., Colton, D., Haddar, H.: On the determination of Dirichlet or transmission eigenvalues from far field data. C. R. Math. 348(7-8), 379-383 (2010) · Zbl 1189.35204 · doi:10.1016/j.crma.2010.02.003
[4] Cakoni, F., Colton, D., Monk, P.: On the use of transmission eigenvalues to estimate the index of refraction from far field data. Inverse Probl. 23(2), 507-522 (2007) · Zbl 1115.78008 · doi:10.1088/0266-5611/23/2/004
[5] Cakoni, F., Colton, D., Monk, P., Sun, J.: The inverse electromagnetic scattering problem for anisotropic media. Inverse Probl. 26(7), 074004 (2010) · Zbl 1197.35314 · doi:10.1088/0266-5611/26/7/074004
[6] Cakoni, F., Gintides, D., Haddar, H.: The existence of an infinite discrete set of transmission eigenvalues. SIAM J. Math. Anal. 42(1), 237-255 (2010) · Zbl 1210.35282 · doi:10.1137/090769338
[7] Cakoni, F., Haddar, H.: On the existence of transmission eigenvalues in an inhomogeneous medium. Appl. Anal. 88(4), 475-493 (2009) · Zbl 1168.35448 · doi:10.1080/00036810802713966
[8] Cakoni, F., Haddar, H.: Transmission eigenvalues in inverse scattering theory. In: Uhlmann, G. (ed.) Inverse problems and applications: inside Out II, MSRI Publications, vol. 60, pp. 527-578. Cambridge University Press (2012) · Zbl 1316.35297
[9] Colton, D., Kress, R.: Inverse Acoustic and electromagnetic scattering theory, applied mathematical sciences, vol. 93, 3rd edn. Springer, New York (2013) · Zbl 1266.35121
[10] Colton, D., Monk, P., Sun, J.: Analytical and computational methods for transmission eigenvalues. Inverse Probl. 26(4), 045011 (2010) · Zbl 1192.78024 · doi:10.1088/0266-5611/26/4/045011
[11] Colton, D., Päivärinta, L., Sylvester, J.: The interior transmission problem. Inverse Probl. Imaging 1(1), 13-28 (2007) · Zbl 1130.35132 · doi:10.3934/ipi.2007.1.13
[12] Golub, G.H., Van Loan, C.F.: Matrix computations, 4th edn. The Johns Hopkins University Press, Baltimore, MD (2012) · Zbl 1268.65037
[13] Guo, J.S., Lin, W.W., Wang, C.S.: Numerical solutions for large sparse quadratic eigenvalue problems. Linear Algebra Appl. 225, 57-89 (1995) · Zbl 0839.65046 · doi:10.1016/0024-3795(93)00318-T
[14] Ji, X., Sun, J., Turner, T.: Algorithm 922: a mixed finite element method for Helmholtz transmission eigenvalues. ACM Trans. Math. Softw. 38(4), 29:1-29:8 (2012) · Zbl 1365.65255 · doi:10.1145/2331130.2331137
[15] Ji, X., Sun, J., Xie, H.: A multigrid method for Helmholtz transmission eigenvalue problems. J. Sci. Comput. 60(2), 276-294 (2014) · Zbl 1305.65225
[16] Kirsch, A.: On the existence of transmission eigenvalues. Inverse Probl. Imaging 3(2), 155-172 (2009) · Zbl 1186.35122 · doi:10.3934/ipi.2009.3.155
[17] Moler, C.B., Stewart, G.W.: An algorithm for generalized matrix eigenvalue problems. SIAM J. Numer. Anal. 10(2), 241-256 (1973) · Zbl 0253.65019 · doi:10.1137/0710024
[18] Monk, P., Sun, J.: Finite element methods for Maxwell’s transmission eigenvalues. SIAM J. Sci. Comput. 34(3), B247-B264 (2012) · Zbl 1246.78020 · doi:10.1137/110839990
[19] Päivärinta, L., Sylvester, J.: Transmission eigenvalues. SIAM J. Math. Anal. 40(2), 738-753 (2008) · Zbl 1159.81411 · doi:10.1137/070697525
[20] Parlett, B.N.: The symmetric eigenvalue problem. SIAM, Philadelphia, PA (1998) · Zbl 0885.65039 · doi:10.1137/1.9781611971163
[21] Persson, P.O., Strang, G.: A simple mesh generator in MATLAB. SIAM Rev. 46(2), 329-345 (2004) · Zbl 1061.65134 · doi:10.1137/S0036144503429121
[22] Sun, J.: Estimation of transmission eigenvalues and the index of refraction from Cauchy data. Inverse Probl. 27(1), 015,009 (2011) · Zbl 1208.35176 · doi:10.1088/0266-5611/27/1/015009
[23] Sun, J.: Iterative methods for transmission eigenvalues. SIAM J. Numer. Anal. 49(5), 1860-1874 (2011) · Zbl 1245.65153 · doi:10.1137/100785478
[24] Tisseur, F., Meerbergen, K.: The quadratic eigenvalue problem. SIAM Rev. 43(2), 235-286 (2001) · Zbl 0985.65028 · doi:10.1137/S0036144500381988
[25] van der Vorst, H.A.: A generalized Lanczos scheme. Math. Comp. 39(160), 559-561 (1982) · Zbl 0493.65018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.