×

A robust numerical algorithm for computing Maxwell’s transmission eigenvalue problems. (English) Zbl 1408.78005

Summary: We study a robust and efficient eigensolver for computing a few smallest positive eigenvalues of the three-dimensional Maxwell’s transmission eigenvalue problem. The discretized governing equations by the Nédélec edge element result in a large-scale quadratic eigenvalue problem (QEP) for which the spectrum contains many zero eigenvalues and the coefficient matrices consist of patterns in the matrix form \(XY^{-1}Z\), both of which prevent existing eigenvalue solvers from being efficient. To remedy these difficulties, we rewrite the QEP as a particular nonlinear eigenvalue problem and develop a secant-type iteration, together with an indefinite locally optimal block preconditioned conjugate gradient (LOBPCG) method, to sequentially compute the desired positive eigenvalues. Furthermore, we propose a novel method to solve the linear systems in each iteration of LOBPCG. Intensive numerical experiments show that our proposed method is robust, although the desired real eigenvalues are surrounded by complex eigenvalues.

MSC:

78A46 Inverse problems (including inverse scattering) in optics and electromagnetic theory
78M10 Finite element, Galerkin and related methods applied to problems in optics and electromagnetic theory
65F08 Preconditioners for iterative methods
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
65N25 Numerical methods for eigenvalue problems for boundary value problems involving PDEs
65F15 Numerical computation of eigenvalues and eigenvectors of matrices
Full Text: DOI

References:

[1] Z. Bai and R.-C. Li, {\it Minimization principles for the linear response eigenvalue problem II: Computation}, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 392-416. · Zbl 1311.65102
[2] A. Bossavit, {\it Computational Electromagnetism: Variational Formulations, Complementarity, Edge Elements}, Academic Press, San Diego, CA, 1998. · Zbl 0945.78001
[3] F. Cakoni, M. Çayören, and D. Colton, {\it Transmission eigenvalues and the nondestructive testing of dielectrics}, Inverse Problems, 24 (2008), 065016. · Zbl 1157.35497
[4] F. Cakoni, D. Colton, and H. Haddar, {\it On the determination of Dirichlet or transmission eigenvalues from far field data}, C. R. Math. Acad. Sci. Paris, 348 (2010), pp. 379-383. · Zbl 1189.35204
[5] F. Cakoni, D. Colton, and P. Monk, {\it On the use of transmission eigenvalues to estimate the index of refraction from far field data}, Inverse Problems, 23 (2007), pp. 507-522. · Zbl 1115.78008
[6] F. Cakoni, D. Colton, P. Monk, and J. Sun, {\it The inverse electromagnetic scattering problem for anisotropic media}, Inverse Problems, 26 (2010), 074004. · Zbl 1197.35314
[7] F. Cakoni, D. Colton, and J. Sun, {\it Estimation of Dirichlet and transmission eigenvalues by near field linear sampling method}, in Proceedings of the 10th International Conference on the Mathematical and Numerical Aspects of Waves, Vancouver, Canada, 2011, pp. 431-434.
[8] F. Cakoni, D. Gintides, and H. Haddar, {\it The existence of an infinite discrete set of transmission eigenvalues}, SIAM J. Math. Anal., 42 (2010), pp. 237-255. · Zbl 1210.35282
[9] F. Cakoni and H. Haddar, {\it On the existence of transmission eigenvalues in an inhomogeneous medium}, Appl. Anal., 88 (2009), pp. 475-493. · Zbl 1168.35448
[10] F. Cakoni and H. Haddar, {\it Transmission eigenvalues in inverse scattering theory}, in Inverse Problems and Applications: Inside Out II, G. Uhlmann, ed., Math. Sci. Res. Inst. Publ. 60, Cambridge University Press, Cambridge, 2012, pp. 527-578. · Zbl 1316.35297
[11] D. Colton and R. Kress, {\it Inverse Acoustic and Electromagnetic Scattering Theory}, 3rd ed., Appl. Math. Sci. 93, Springer, New York, 2013. · Zbl 1266.35121
[12] D. Colton, P. Monk, and J. Sun, {\it Analytical and computational methods for transmission eigenvalues}, Inverse Problems, 26 (2010), 045011. · Zbl 1192.78024
[13] D. Colton, L. Päivärinta, and J. Sylvester, {\it The interior transmission problem}, Inverse Probl. Imaging, 1 (2007), pp. 13-28. · Zbl 1130.35132
[14] H. Haddar, {\it The interior transmission problem for anisotropic Maxwell’s equations and its applications to the inverse problem}, Math. Methods Appl. Sci., 27 (2004), pp. 2111-2129. · Zbl 1062.35168
[15] G. C. Hsiao, F. Liu, J. Sun, and L. Xu, {\it A coupled BEM and FEM for the interior transmission problem in acoustics}, J. Comput. Appl. Math., 235 (2011), pp. 5213-5221. · Zbl 1256.76048
[16] T.-M. Huang, H.-E. Hsieh, W.-W. Lin, and W. Wang, {\it Eigenvalue solvers for three dimensional photonic crystals with face-centered cubic lattice}, J. Comput. Appl. Math., 272 (2014), pp. 350-361. · Zbl 1295.78019
[17] Y.-L. Huang, T.-M. Huang, W.-W. Lin, and W.-C. Wang, {\it A null space free Jacobi-Davidson iteration for Maxwell’s operator}, SIAM J. Sci. Comput., 37 (2015), pp. A1-A29. · Zbl 1330.65058
[18] X. Ji, J. Sun, and T. Turner, {\it Algorithm 922: A mixed finite element method for Helmholtz transmission eigenvalues}, ACM Trans. Math. Software, 38 (2012), 29. · Zbl 1365.65255
[19] X. Ji, J. Sun, and H. Xie, {\it A multigrid method for Helmholtz transmission eigenvalue problems}, J. Sci. Comput., 60 (2014), pp. 276-294. · Zbl 1305.65225
[20] A. Kirsch, {\it On the existence of transmission eigenvalues}, Inverse Probl. Imaging, 3 (2009), pp. 155-172. · Zbl 1186.35122
[21] A. Kleefeld, {\it A numerical method to compute interior transmission eigenvalues}, Inverse Problems, 29 (2013), 104012. · Zbl 1292.65123
[22] A. V. Knyazev, {\it Toward the optimal preconditioned eigensolver: Locally optimal block preconditoned conjugate gradient method}, SIAM J. Sci. Comput., 23 (2001), pp. 517-541. · Zbl 0992.65028
[23] D. Kressner, M. M. Pandur, and M. Shao, {\it An indefinite variant of LOBPCG for definite matrix pencils}, Numer. Algorithms, 66 (2014), pp. 681-703. · Zbl 1297.65040
[24] P. Lancaster and L. Rodman, {\it Canonical forms for Hermitian matrix pairs under strict equivalence and congurence}, SIAM Rev., 47 (2005), pp. 407-443. · Zbl 1087.15014
[25] T. Li, W.-Q. Huang, W.-W. Lin, and J. Liu, {\it On spectral analysis and a novel algorithm for transmission eigenvalue problems}, J. Sci. Comput., 64 (2015), pp. 83-108. · Zbl 1327.65227
[26] X. Liang, R.-C. Li, and Z. Bai, {\it Trace minimization principles for positive semi-definite pencils}, Linear Algebra Appl., 438 (2013), pp. 3085-3106. · Zbl 1262.15010
[27] P. Monk, {\it Finite Element Methods for Maxwell’s Equations}, Oxford University Press, Oxford, UK, 2003. · Zbl 1024.78009
[28] P. Monk and J. Sun, {\it Finite element methods for Maxwell’s transmission eigenvalues}, SIAM J. Sci. Comput., 34 (2012), pp. B247-B264. · Zbl 1246.78020
[29] J. C. Nédélec, {\it Mixed finite elements in \(\mathbb{R}^3 \)}, Numer. Math., 35 (1980), pp. 315-341. · Zbl 0419.65069
[30] L. Päivärinta and J. Sylvester, {\it Transmission eigenvalues}, SIAM J. Math. Anal., 40 (2008), pp. 738-753. · Zbl 1159.81411
[31] J. Sun, {\it Estimation of transmission eigenvalues and the index of refraction from Cauchy data}, Inverse Problems, 27 (2011), 015009. · Zbl 1208.35176
[32] J. Sun, {\it Iterative methods for transmission eigenvalues}, SIAM J. Numer. Anal., 49 (2011), pp. 1860-1874. · Zbl 1245.65153
[33] J. Sun and L. Xu, {\it Computation of Maxwell’s transmission eigenvalues and its applications in inverse medium problems}, Inverse Problems, 29 (2013), 104013. · Zbl 1286.65149
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.