×

Small black hole explosions. (English) Zbl 07716776

Summary: Small black holes are a powerful tool to explore infinite distances in moduli spaces. However, we show that in 4d theories with a scalar potential growing fast enough at infinity, it is energetically too costly for scalars to diverge at the core, and the small black hole puffs up into a regular black hole, or follows a runaway behaviour.
We derive a critical exponent characterizing the occurrence or not of such small black hole explosions, both from a 4d perspective, and in the 2d theory after an \(\mathbf{S}^2\) truncation. The latter setup allows a unified discussion of fluxes, domain walls and black holes, solving an apparent puzzle in the expression of their potentials in the 4d \(\mathcal{N} = 2\) gauged supergravity context.
We discuss the realization of these ideas in 4d \(\mathcal{N} = 2\) gauged supergravities. Along the way we show that many regular black hole supergravity solutions in the literature in the latter context are incomplete, due to Freed-Witten anomalies (or duals thereof), and require the emission of strings by the black hole.
From the 2d perspective, small black hole solutions correspond to dynamical cobordisms, with the core describing an end of the world brane. Small black hole explosions represent obstructions to completing the dynamical cobordism. We study the implications for the Cobordism Distance Conjecture, which states that in any theory there should exist dynamical cobordisms accessing all possible infinite distance limits in scalar field space. The realization of this principle using small black holes leads to non-trivial constraints on the 4d scalar potential of any consistent theory; in the 4d \(\mathcal{N} = 2\) context, they allow to recover from a purely bottom-up perspective, several non-trivial properties of vector moduli spaces near infinity familiar from \(\mathrm{CY}_3\) compactifications.

MSC:

83C57 Black holes
83C10 Equations of motion in general relativity and gravitational theory
83C20 Classes of solutions; algebraically special solutions, metrics with symmetries for problems in general relativity and gravitational theory
83E30 String and superstring theories in gravitational theory
83E50 Supergravity

References:

[1] Ooguri, H.; Vafa, C., On the Geometry of the String Landscape and the Swampland, Nucl. Phys. B, 766, 21 (2007) · Zbl 1117.81117 · doi:10.1016/j.nuclphysb.2006.10.033
[2] Grimm, TW; Palti, E.; Valenzuela, I., Infinite Distances in Field Space and Massless Towers of States, JHEP, 08, 143 (2018) · Zbl 1396.81151 · doi:10.1007/JHEP08(2018)143
[3] Corvilain, P.; Grimm, TW; Valenzuela, I., The Swampland Distance Conjecture for Kähler moduli, JHEP, 08, 075 (2019) · Zbl 1421.83112 · doi:10.1007/JHEP08(2019)075
[4] T.W. Grimm, C. Li and I. Valenzuela, Asymptotic Flux Compactifications and the Swampland, JHEP06 (2020) 009 [arXiv:1910.09549] [Erratum ibid.01 (2021) 007] [INSPIRE].
[5] Buratti, G.; Calderón, J.; Uranga, AM, Transplanckian axion monodromy!?, JHEP, 05, 176 (2019) · doi:10.1007/JHEP05(2019)176
[6] Lüst, D.; Palti, E.; Vafa, C., AdS and the Swampland, Phys. Lett. B, 797 (2019) · Zbl 1427.81108 · doi:10.1016/j.physletb.2019.134867
[7] Buratti, G.; Delgado, M.; Uranga, AM, Dynamical tadpoles, stringy cobordism, and the SM from spontaneous compactification, JHEP, 06, 170 (2021) · doi:10.1007/JHEP06(2021)170
[8] Buratti, G.; Calderón-Infante, J.; Delgado, M.; Uranga, AM, Dynamical Cobordism and Swampland Distance Conjectures, JHEP, 10, 037 (2021) · Zbl 1476.83153 · doi:10.1007/JHEP10(2021)037
[9] Angius, R.; Calderón-Infante, J.; Delgado, M.; Huertas, J.; Uranga, AM, At the end of the world: Local Dynamical Cobordism, JHEP, 06, 142 (2022) · Zbl 1522.81307 · doi:10.1007/JHEP06(2022)142
[10] Blumenhagen, R.; Cribiori, N.; Kneissl, C.; Makridou, A., Dynamical cobordism of a domain wall and its companion defect 7-brane, JHEP, 08, 204 (2022) · Zbl 1522.81324 · doi:10.1007/JHEP08(2022)204
[11] Blumenhagen, R.; Kneissl, C.; Wang, C., Dynamical Cobordism Conjecture: solutions for end-of-the-world branes, JHEP, 05, 123 (2023) · Zbl 07701938 · doi:10.1007/JHEP05(2023)123
[12] J. McNamara and C. Vafa, Cobordism Classes and the Swampland, arXiv:1909.10355 [INSPIRE].
[13] Dudas, E.; Mourad, J., Brane solutions in strings with broken supersymmetry and dilaton tadpoles, Phys. Lett. B, 486, 172 (2000) · Zbl 1050.81640 · doi:10.1016/S0370-2693(00)00734-6
[14] Blumenhagen, R.; Font, A., Dilaton tadpoles, warped geometries and large extra dimensions for nonsupersymmetric strings, Nucl. Phys. B, 599, 241 (2001) · Zbl 1097.81708 · doi:10.1016/S0550-3213(01)00028-1
[15] Dudas, E.; Mourad, J.; Timirgaziu, C., Time and space dependent backgrounds from nonsupersymmetric strings, Nucl. Phys. B, 660, 3 (2003) · Zbl 1034.81038 · doi:10.1016/S0550-3213(03)00248-7
[16] Dudas, E.; Pradisi, G.; Nicolosi, M.; Sagnotti, A., On tadpoles and vacuum redefinitions in string theory, Nucl. Phys. B, 708, 3 (2005) · Zbl 1160.81443 · doi:10.1016/j.nuclphysb.2004.11.028
[17] Basile, I.; Mourad, J.; Sagnotti, A., On Classical Stability with Broken Supersymmetry, JHEP, 01, 174 (2019) · Zbl 1409.83201 · doi:10.1007/JHEP01(2019)174
[18] Antonelli, R.; Basile, I., Brane annihilation in non-supersymmetric strings, JHEP, 11, 021 (2019) · Zbl 1429.83084 · doi:10.1007/JHEP11(2019)021
[19] Mininno, A.; Uranga, AM, Dynamical tadpoles and Weak Gravity Constraints, JHEP, 05, 177 (2021) · doi:10.1007/JHEP05(2021)177
[20] I. Basile, On String Vacua without Supersymmetry: brane dynamics, bubbles and holography, Ph.D. Thesis, Scuola Normale Superiore, Pisa, Italy (2020) [arXiv:2010.00628] [INSPIRE].
[21] Basile, I., Supersymmetry breaking, brane dynamics and Swampland conjectures, JHEP, 10, 080 (2021) · Zbl 1476.81093 · doi:10.1007/JHEP10(2021)080
[22] J. Mourad and A. Sagnotti, A 4D IIB flux vacuum and supersymmetry breaking. Part I. Fermionic spectrum, JHEP08 (2022) 301 [arXiv:2206.03340] [INSPIRE]. · Zbl 1522.81651
[23] Lanza, S.; Marchesano, F.; Martucci, L.; Valenzuela, I., Swampland Conjectures for Strings and Membranes, JHEP, 02, 006 (2021) · Zbl 1460.83101 · doi:10.1007/JHEP02(2021)006
[24] Lanza, S.; Marchesano, F.; Martucci, L.; Valenzuela, I., The EFT stringy viewpoint on large distances, JHEP, 09, 197 (2021) · Zbl 1472.83108 · doi:10.1007/JHEP09(2021)197
[25] Marchesano, F.; Wiesner, M., 4d strings at strong coupling, JHEP, 08, 004 (2022) · Zbl 1522.81390 · doi:10.1007/JHEP08(2022)004
[26] Dabholkar, A.; Nampuri, S., Quantum black holes, Lect. Notes Phys., 851, 165 (2012) · Zbl 1294.83022 · doi:10.1007/978-3-642-25947-0_5
[27] Hamada, Y.; Montero, M.; Vafa, C.; Valenzuela, I., Finiteness and the swampland, J. Phys. A, 55 (2022) · Zbl 1506.81050 · doi:10.1088/1751-8121/ac6404
[28] Gonzalo, E.; Ibáñez, LE; Uranga, AM, Modular symmetries and the swampland conjectures, JHEP, 05, 105 (2019) · Zbl 1416.83123 · doi:10.1007/JHEP05(2019)105
[29] Delgado, M.; Montero, M.; Vafa, C., Black holes as probes of moduli space geometry, JHEP, 04, 045 (2023) · Zbl 07693933 · doi:10.1007/JHEP04(2023)045
[30] Green, DR; Silverstein, E.; Starr, D., Attractor explosions and catalyzed vacuum decay, Phys. Rev. D, 74 (2006) · doi:10.1103/PhysRevD.74.024004
[31] Itzhaki, N.; Maldacena, JM; Sonnenschein, J.; Yankielowicz, S., Supergravity and the large N limit of theories with sixteen supercharges, Phys. Rev. D, 58 (1998) · doi:10.1103/PhysRevD.58.046004
[32] Cribiori, N.; Gnecchi, A.; Lüst, D.; Scalisi, M., On the correspondence between black holes, domain walls and fluxes, JHEP, 05, 033 (2023) · Zbl 07701848 · doi:10.1007/JHEP05(2023)033
[33] Sen, A., Black hole entropy function and the attractor mechanism in higher derivative gravity, JHEP, 09, 038 (2005) · doi:10.1088/1126-6708/2005/09/038
[34] Sen, A., Black Hole Entropy Function, Attractors and Precision Counting of Microstates, Gen. Rel. Grav., 40, 2249 (2008) · Zbl 1153.83007 · doi:10.1007/s10714-008-0626-4
[35] Bellucci, S.; Ferrara, S.; Marrani, A.; Yeranyan, A., d=4 Black Hole Attractors in N = 2 Supergravity with Fayet-Iliopoulos Terms, Phys. Rev. D, 77 (2008) · doi:10.1103/PhysRevD.77.085027
[36] Cacciatori, SL; Klemm, D., Supersymmetric AdS(4) black holes and attractors, JHEP, 01, 085 (2010) · Zbl 1269.81110 · doi:10.1007/JHEP01(2010)085
[37] G. Dall’Agata and A. Gnecchi, Flow equations and attractors for black holes in N = 2 U(1) gauged supergravity, JHEP03 (2011) 037 [arXiv:1012.3756] [INSPIRE]. · Zbl 1301.81248
[38] Hristov, K.; Vandoren, S., Static supersymmetric black holes in AdS_4with spherical symmetry, JHEP, 04, 047 (2011) · Zbl 1250.83041 · doi:10.1007/JHEP04(2011)047
[39] Klemm, D.; Vaughan, O., Nonextremal black holes in gauged supergravity and the real formulation of special geometry, JHEP, 01, 053 (2013) · Zbl 1342.83391 · doi:10.1007/JHEP01(2013)053
[40] Klemm, D.; Vaughan, O., Nonextremal black holes in gauged supergravity and the real formulation of special geometry II, Class. Quant. Grav., 30 (2013) · Zbl 1267.83108 · doi:10.1088/0264-9381/30/6/065003
[41] Gnecchi, A.; Toldo, C., On the non-BPS first order flow in N = 2 U(1)-gauged Supergravity, JHEP, 03, 088 (2013) · Zbl 1342.83475 · doi:10.1007/JHEP03(2013)088
[42] Astesiano, D.; Cacciatori, SL; Marrani, A., Black hole attractors and U(1) Fayet-Iliopoulos gaugings: analysis and classification, JHEP, 04, 099 (2022) · Zbl 1522.83117 · doi:10.1007/JHEP04(2022)099
[43] D. van de Heisteeg, C. Vafa and M. Wiesner, Bounds on Species Scale and the Distance Conjecture, arXiv:2303.13580 [INSPIRE].
[44] Denef, F., Attractors at weak gravity, Nucl. Phys. B, 547, 201 (1999) · Zbl 0943.81032 · doi:10.1016/S0550-3213(99)00096-6
[45] Denef, F., Supergravity flows and D-brane stability, JHEP, 08, 050 (2000) · Zbl 0990.83553 · doi:10.1088/1126-6708/2000/08/050
[46] Anabalon, A.; Astefanesei, D.; Mann, R., Exact asymptotically flat charged hairy black holes with a dilaton potential, JHEP, 10, 184 (2013) · doi:10.1007/JHEP10(2013)184
[47] Anabalón, A.; Astefanesei, D., On attractor mechanism of AdS_4black holes, Phys. Lett. B, 727, 568 (2013) · Zbl 1331.83038 · doi:10.1016/j.physletb.2013.11.013
[48] Banks, T.; Seiberg, N., Symmetries and Strings in Field Theory and Gravity, Phys. Rev. D, 83 (2011) · doi:10.1103/PhysRevD.83.084019
[49] Berasaluce-Gonzalez, M.; Camara, PG; Marchesano, F.; Uranga, AM, Zp charged branes in flux compactifications, JHEP, 04, 138 (2013) · Zbl 1342.81397 · doi:10.1007/JHEP04(2013)138
[50] Freed, DS; Witten, E., Anomalies in string theory with D-branes, Asian J. Math., 3, 819 (1999) · Zbl 1028.81052 · doi:10.4310/AJM.1999.v3.n4.a6
[51] Maldacena, JM; Moore, GW; Seiberg, N., D-brane instantons and K theory charges, JHEP, 11, 062 (2001) · doi:10.1088/1126-6708/2001/11/062
[52] Witten, E., Baryons and branes in anti-de Sitter space, JHEP, 07, 006 (1998) · Zbl 0958.81081
[53] Bachas, CP; Douglas, MR; Green, MB, Anomalous creation of branes, JHEP, 07, 002 (1997) · Zbl 0949.81505 · doi:10.1088/1126-6708/1997/07/002
[54] Danielsson, U.; Ferretti, G.; Klebanov, IR, Creation of fundamental strings by crossing D-branes, Phys. Rev. Lett., 79, 1984 (1997) · Zbl 0947.81551 · doi:10.1103/PhysRevLett.79.1984
[55] Bergman, O.; Gaberdiel, MR; Lifschytz, G., Branes, orientifolds and the creation of elementary strings, Nucl. Phys. B, 509, 194 (1998) · Zbl 0933.81027 · doi:10.1016/S0550-3213(97)00632-9
[56] Hanany, A.; Witten, E., Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics, Nucl. Phys. B, 492, 152 (1997) · Zbl 0996.58509 · doi:10.1016/S0550-3213(97)80030-2
[57] Gendler, N.; Valenzuela, I., Merging the weak gravity and distance conjectures using BPS extremal black holes, JHEP, 01, 176 (2021) · Zbl 1459.83008 · doi:10.1007/JHEP01(2021)176
[58] Grimm, TW; Li, C.; Palti, E., Infinite Distance Networks in Field Space and Charge Orbits, JHEP, 03, 016 (2019) · Zbl 1414.81184 · doi:10.1007/JHEP03(2019)016
[59] Hamada, Y.; Vafa, C., 8d supergravity, reconstruction of internal geometry and the Swampland, JHEP, 06, 178 (2021) · Zbl 1466.83052 · doi:10.1007/JHEP06(2021)178
[60] S. Hellerman and X. Liu, Dynamical dimension change in supercritical string theory, hep-th/0409071 [INSPIRE].
[61] Hellerman, S.; Swanson, I., Cosmological solutions of supercritical string theory, Phys. Rev. D, 77 (2008) · doi:10.1103/PhysRevD.77.126011
[62] Hellerman, S.; Swanson, I., Cosmological unification of string theories, JHEP, 07, 022 (2008) · doi:10.1088/1126-6708/2008/07/022
[63] Hellerman, S.; Swanson, I., Dimension-changing exact solutions of string theory, JHEP, 09, 096 (2007) · doi:10.1088/1126-6708/2007/09/096
[64] Hellerman, S.; Swanson, I., Charting the landscape of supercritical string theory, Phys. Rev. Lett., 99 (2007) · Zbl 1228.81230 · doi:10.1103/PhysRevLett.99.171601
[65] Angius, R.; Delgado, M.; Uranga, AM, Dynamical Cobordism and the beginning of time: supercritical strings and tachyon condensation, JHEP, 08, 285 (2022) · Zbl 1522.81308 · doi:10.1007/JHEP08(2022)285
[66] Sugimoto, S., Anomaly cancellations in type I D-9-anti-D-9 system and the USp(32) string theory, Prog. Theor. Phys., 102, 685 (1999) · doi:10.1143/PTP.102.685
[67] Antoniadis, I.; Dudas, E.; Sagnotti, A., Brane supersymmetry breaking, Phys. Lett. B, 464, 38 (1999) · Zbl 0987.81551 · doi:10.1016/S0370-2693(99)01023-0
[68] Aldazabal, G.; Uranga, AM, Tachyon free nonsupersymmetric type IIB orientifolds via Brane-anti-brane systems, JHEP, 10, 024 (1999) · Zbl 0957.81040 · doi:10.1088/1126-6708/1999/10/024
[69] Angelantonj, C.; Antoniadis, I.; D’Appollonio, G.; Dudas, E.; Sagnotti, A., Type I vacua with brane supersymmetry breaking, Nucl. Phys. B, 572, 36 (2000) · Zbl 0947.81124 · doi:10.1016/S0550-3213(00)00052-3
[70] Angelantonj, C.; Blumenhagen, R.; Gaberdiel, MR, Asymmetric orientifolds, brane supersymmetry breaking and nonBPS branes, Nucl. Phys. B, 589, 545 (2000) · Zbl 0991.81087 · doi:10.1016/S0550-3213(00)00518-6
[71] Rabadan, R.; Uranga, AM, Type IIB orientifolds without untwisted tadpoles, and nonBPS D-branes, JHEP, 01, 029 (2001) · doi:10.1088/1126-6708/2001/01/029
[72] Kachru, S.; Kallosh, R.; Linde, AD; Trivedi, SP, De Sitter vacua in string theory, Phys. Rev. D, 68 (2003) · Zbl 1244.83036 · doi:10.1103/PhysRevD.68.046005
[73] E. Lauria and A. Van Proeyen, \( \mathcal{N} = 2\) Supergravity in D = 4, 5, 6 Dimensions, Lect. Notes Phys.966 (2020) 1 [arXiv:2004.11433]. · Zbl 1432.81003
[74] S. Gukov, C. Vafa and E. Witten, CFT’s from Calabi-Yau four folds, Nucl. Phys. B584 (2000) 69 [hep-th/9906070] [Erratum ibid.608 (2001) 477] [INSPIRE]. · Zbl 0984.81143
[75] Taylor, TR; Vafa, C., R R flux on Calabi-Yau and partial supersymmetry breaking, Phys. Lett. B, 474, 130 (2000) · Zbl 0959.81105 · doi:10.1016/S0370-2693(00)00005-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.