×

4d strings at strong coupling. (English) Zbl 1522.81390

Summary: Weakly coupled regions of 4d EFTs coupled to gravity are particularly suitable to describe the backreaction of BPS fundamental axionic strings, dubbed EFT strings, in a local patch of spacetime around their core. We study the extension of these local solutions to global ones, which implies probing regions of strong coupling and provides an estimate of the EFT string tension therein. We conjecture that for the EFT string charge generators such a global extension is always possible and yields a sub-Planckian tension. We substantiate this claim by analysing global solutions of 4d strings made up from NS5-branes wrapping Calabi-Yau threefold divisors in either type IIA or heterotic string theory. We argue that in this case the global, non-perturbative data of the backreaction can be simply encoded in terms of a GLSM describing the compactification, as we demonstrate in explicit examples.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
83E30 String and superstring theories in gravitational theory
81T60 Supersymmetric field theories in quantum mechanics
83E50 Supergravity

References:

[1] C. Vafa, The string landscape and the swampland, hep-th/0509212 [INSPIRE]. · Zbl 1117.81117
[2] T. D. Brennan, F. Carta and C. Vafa, The string landscape, the swampland, and the missing corner, PoSTASI2017 (2017) 015 [arXiv:1711.00864] [INSPIRE].
[3] Palti, E., The swampland: introduction and review, Fortsch. Phys., 67, 1900037 (2019) · Zbl 1527.83096 · doi:10.1002/prop.201900037
[4] M. van Beest, J. Calderón-Infante, D. Mirfendereski and I. Valenzuela, Lectures on the swampland program in string compactifications, arXiv:2102.01111 [INSPIRE].
[5] Graña, M.; Herráez, A., The swampland conjectures: a bridge from quantum gravity to particle physics, Universe, 7, 273 (2021) · doi:10.3390/universe7080273
[6] Arkani-Hamed, N.; Motl, L.; Nicolis, A.; Vafa, C., The string landscape, black holes and gravity as the weakest force, JHEP, 06, 060 (2007) · doi:10.1088/1126-6708/2007/06/060
[7] Lanza, S.; Marchesano, F.; Martucci, L.; Valenzuela, I., Swampland conjectures for strings and membranes, JHEP, 02, 006 (2021) · Zbl 1460.83101 · doi:10.1007/JHEP02(2021)006
[8] Lanza, S.; Marchesano, F.; Martucci, L.; Valenzuela, I., The EFT stringy viewpoint on large distances, JHEP, 09, 197 (2021) · Zbl 1472.83108 · doi:10.1007/JHEP09(2021)197
[9] Klaewer, D.; Palti, E., Super-Planckian spatial field variations and quantum gravity, JHEP, 01, 088 (2017) · Zbl 1373.83044 · doi:10.1007/JHEP01(2017)088
[10] Dolan, MJ; Draper, P.; Kozaczuk, J.; Patel, H., Transplanckian censorship and global cosmic strings, JHEP, 04, 133 (2017) · Zbl 1378.83051 · doi:10.1007/JHEP04(2017)133
[11] Hebecker, A.; Henkenjohann, P.; Witkowski, LT, What is the magnetic weak gravity conjecture for axions?, Fortsch. Phys., 65, 1700011 (2017) · Zbl 1371.83204 · doi:10.1002/prop.201700011
[12] Buratti, G.; Calderón, J.; Uranga, AM, Transplanckian axion monodromy!?, JHEP, 05, 176 (2019) · doi:10.1007/JHEP05(2019)176
[13] Draper, P.; Farkas, S., Gravitational instabilities and censorship of large scalar field excursions, JHEP, 05, 158 (2019) · Zbl 1416.83015 · doi:10.1007/JHEP05(2019)158
[14] Draper, P.; Farkas, S., Transplanckian censorship and the local swampland distance conjecture, JHEP, 01, 133 (2020) · doi:10.1007/JHEP01(2020)133
[15] Bonnefoy, Q.; Ciambelli, L.; Lüst, D.; Lüst, S., Infinite black hole entropies at infinite distances and tower of states, Nucl. Phys. B, 958 (2020) · Zbl 1473.83040 · doi:10.1016/j.nuclphysb.2020.115112
[16] Gendler, N.; Valenzuela, I., Merging the weak gravity and distance conjectures using BPS extremal black holes, JHEP, 01, 176 (2021) · Zbl 1459.83008 · doi:10.1007/JHEP01(2021)176
[17] Buratti, G.; Calderón-Infante, J.; Delgado, M.; Uranga, AM, Dynamical cobordism and swampland distance conjectures, JHEP, 10, 037 (2021) · Zbl 1476.83153 · doi:10.1007/JHEP10(2021)037
[18] Alim, M.; Heidenreich, B.; Rudelius, T., The weak gravity conjecture and BPS particles, Fortsch. Phys., 69, 2100125 (2021) · Zbl 1537.81159 · doi:10.1002/prop.202100125
[19] N. Cribiori, M. Dierigl, A. Gnecchi, D. Lüst and M. Scalisi, Large and small non-extremal black holes, thermodynamic dualities, and the swampland, arXiv:2202.04657 [INSPIRE].
[20] Vafa, C., Evidence for F-theory, Nucl. Phys. B, 469, 403 (1996) · Zbl 1003.81531 · doi:10.1016/0550-3213(96)00172-1
[21] Bergshoeff, EA; Hartong, J.; Ortín, T.; Roest, D., Seven-branes and supersymmetry, JHEP, 02, 003 (2007) · Zbl 1119.81082 · doi:10.1088/1126-6708/2007/02/003
[22] Banks, T.; Douglas, MR; Seiberg, N., Probing F-theory with branes, Phys. Lett. B, 387, 278 (1996) · doi:10.1016/0370-2693(96)00808-8
[23] Quigley, C.; Sethi, S., Linear sigma models with torsion, JHEP, 11, 034 (2011) · Zbl 1306.81272 · doi:10.1007/JHEP11(2011)034
[24] Blaszczyk, M.; Groot Nibbelink, S.; Ruehle, F., Green-Schwarz mechanism in heterotic (2, 0) gauged linear sigma models: torsion and NS5 branes, JHEP, 08, 083 (2011) · Zbl 1298.81247 · doi:10.1007/JHEP08(2011)083
[25] J. McNamara and C. Vafa, Cobordism classes and the swampland, arXiv:1909.10355 [INSPIRE].
[26] Palti, E.; Vafa, C.; Weigand, T., Supersymmetric protection and the swampland, JHEP, 06, 168 (2020) · Zbl 1437.81100 · doi:10.1007/JHEP06(2020)168
[27] Greene, BR; Shapere, AD; Vafa, C.; Yau, S-T, Stringy cosmic strings and noncompact Calabi-Yau manifolds, Nucl. Phys. B, 337, 1 (1990) · Zbl 0744.53045 · doi:10.1016/0550-3213(90)90248-C
[28] Green, PS; Hubsch, T., Space-time variable superstring vacua (Calabi-Yau cosmic yarn), Int. J. Mod. Phys. A, 9, 3203 (1994) · Zbl 0985.81633 · doi:10.1142/S0217751X94001266
[29] Lanza, S.; Marchesano, F.; Martucci, L.; Sorokin, D., How many fluxes fit in an EFT?, JHEP, 10, 110 (2019) · Zbl 1427.83126 · doi:10.1007/JHEP10(2019)110
[30] E. Viehweg, Quasi-projective moduli for polarized manifolds, Springer, Berlin, Heidelberg, Germany (1995). · Zbl 0844.14004
[31] Grimm, TW; Palti, E.; Valenzuela, I., Infinite distances in field space and massless towers of states, JHEP, 08, 143 (2018) · Zbl 1396.81151 · doi:10.1007/JHEP08(2018)143
[32] Grimm, TW; Li, C.; Palti, E., Infinite distance networks in field space and charge orbits, JHEP, 03, 016 (2019) · Zbl 1414.81184 · doi:10.1007/JHEP03(2019)016
[33] Corvilain, P.; Grimm, TW; Valenzuela, I., The swampland distance conjecture for Kähler moduli, JHEP, 08, 075 (2019) · Zbl 1421.83112 · doi:10.1007/JHEP08(2019)075
[34] Aspinwall, PS, Some navigation rules for D-brane monodromy, J. Math. Phys., 42, 5534 (2001) · Zbl 1019.81050 · doi:10.1063/1.1409963
[35] Seiberg, N., Modifying the sum over topological sectors and constraints on supergravity, JHEP, 07, 070 (2010) · Zbl 1290.83025 · doi:10.1007/JHEP07(2010)070
[36] Banks, T.; Seiberg, N., Symmetries and strings in field theory and gravity, Phys. Rev. D, 83 (2011) · doi:10.1103/PhysRevD.83.084019
[37] Dierigl, M.; Heckman, JJ, Swampland cobordism conjecture and non-Abelian duality groups, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.066006
[38] Ooguri, H.; Vafa, C., On the geometry of the string landscape and the swampland, Nucl. Phys. B, 766, 21 (2007) · Zbl 1117.81117 · doi:10.1016/j.nuclphysb.2006.10.033
[39] I. V. Melnikov, An introduction to two-dimensional quantum field theory with (0, 2) supersymmetry, Lect. Notes Phys.951 (2019) 1. · Zbl 1417.81006
[40] Strominger, A., Massless black holes and conifolds in string theory, Nucl. Phys. B, 451, 96 (1995) · Zbl 0925.83071 · doi:10.1016/0550-3213(95)00287-3
[41] Jockers, H.; Kumar, V.; Lapan, JM; Morrison, DR; Romo, M., Two-sphere partition functions and Gromov-Witten invariants, Commun. Math. Phys., 325, 1139 (2014) · Zbl 1301.81253 · doi:10.1007/s00220-013-1874-z
[42] Gomis, J.; Lee, S., Exact Kähler potential from gauge theory and mirror symmetry, JHEP, 04, 019 (2013) · Zbl 1342.81586 · doi:10.1007/JHEP04(2013)019
[43] Morrison, DR; Plesser, MR, Summing the instantons: quantum cohomology and mirror symmetry in toric varieties, Nucl. Phys. B, 440, 279 (1995) · Zbl 0908.14014 · doi:10.1016/0550-3213(95)00061-V
[44] Cecotti, S., Special geometry and the swampland, JHEP, 09, 147 (2020) · Zbl 1454.83157 · doi:10.1007/JHEP09(2020)147
[45] Berglund, P., Periods for Calabi-Yau and Landau-Ginzburg vacua, Nucl. Phys. B, 419, 352 (1994) · Zbl 0896.14022 · doi:10.1016/0550-3213(94)90047-7
[46] Candelas, P.; De la Ossa, XC; Green, PS; Parkes, L., An exactly soluble superconformal theory from a mirror pair of Calabi-Yau manifolds, Phys. Lett. B, 258, 118 (1991) · Zbl 1098.32506 · doi:10.1016/0370-2693(91)91218-K
[47] Bastian, B.; Grimm, TW; van de Heisteeg, D., Weak gravity bounds in asymptotic string compactifications, JHEP, 06, 162 (2021) · Zbl 1466.83009 · doi:10.1007/JHEP06(2021)162
[48] Todorov, A., Weil-Petersson volumes of the moduli spaces of CY manifolds, Commun. Anal. Geom., 15, 407 (2007) · Zbl 1129.14053 · doi:10.4310/CAG.2007.v15.n2.a8
[49] Z. Lu and X. Sun, On the Weil-Petersson volume and the first Chern class of the moduli space of Calabi-Yau manifolds, Commun. Math. Phys.261 (2006) 297 [math.DG/0510021] [INSPIRE]. · Zbl 1109.32020
[50] M. Douglas and Z. Lu, On the geometry of moduli space of polarized Calabi-Yau manifolds, math.DG/0603414 [INSPIRE].
[51] Candelas, P.; Font, A.; Katz, SH; Morrison, DR, Mirror symmetry for two parameter models. 2, Nucl. Phys. B, 429, 626 (1994) · Zbl 0899.14018 · doi:10.1016/0550-3213(94)90155-4
[52] Aspinwall, PS; Plesser, MR, T duality can fail, JHEP, 08, 001 (1999) · Zbl 1060.81569 · doi:10.1088/1126-6708/1999/08/001
[53] Bergshoeff, E.; Hartong, J.; Sorokin, D., Q7-branes and their coupling to IIB supergravity, JHEP, 12, 079 (2007) · Zbl 1246.83215 · doi:10.1088/1126-6708/2007/12/079
[54] Mayr, P., Phases of supersymmetric D-branes on Kähler manifolds and the McKay correspondence, JHEP, 01, 018 (2001) · doi:10.1088/1126-6708/2001/01/018
[55] J. A. Harvey and A. Strominger, The heterotic string is a soliton, Nucl. Phys. B449 (1995) 535 [Erratum ibid.458 (1996) 456] [hep-th/9504047] [INSPIRE]. · Zbl 1076.81555
[56] Kachru, S.; Vafa, C., Exact results for N = 2 compactifications of heterotic strings, Nucl. Phys. B, 450, 69 (1995) · Zbl 0957.14509 · doi:10.1016/0550-3213(95)00307-E
[57] Aspinwall, PS; Greene, BR; Morrison, DR, Measuring small distances in N = 2 sigma models, Nucl. Phys. B, 420, 184 (1994) · Zbl 0990.81689 · doi:10.1016/0550-3213(94)90379-4
[58] Aldazabal, G.; Font, A.; Ibáñez, LE; Quevedo, F., Heterotic/heterotic duality in D = 6, D = 4, Phys. Lett. B, 380, 33 (1996) · Zbl 0973.14506 · doi:10.1016/0370-2693(96)00453-4
[59] Álvarez-García, R.; Schlechter, L., Analytic periods via twisted symmetric squares, JHEP, 07, 024 (2022) · Zbl 1522.81304 · doi:10.1007/JHEP07(2022)024
[60] Grimm, TW, Moduli space holography and the finiteness of flux vacua, JHEP, 10, 153 (2021) · Zbl 1476.83137 · doi:10.1007/JHEP10(2021)153
[61] Grimm, TW; Monnee, J.; van de Heisteeg, D., Bulk reconstruction in moduli space holography, JHEP, 05, 010 (2022) · Zbl 1522.83387 · doi:10.1007/JHEP05(2022)010
[62] Kläwer, D., Modular curves and the refined distance conjecture, JHEP, 12, 088 (2021) · Zbl 1521.83185 · doi:10.1007/JHEP12(2021)088
[63] Marchesano, F.; Wiesner, M., Instantons and infinite distances, JHEP, 08, 088 (2019) · Zbl 1421.83121 · doi:10.1007/JHEP08(2019)088
[64] Baume, F.; Marchesano, F.; Wiesner, M., Instanton corrections and emergent strings, JHEP, 04, 174 (2020) · Zbl 1436.83080 · doi:10.1007/JHEP04(2020)174
[65] Álvarez-García, R.; Kläwer, D.; Weigand, T., Membrane limits in quantum gravity, Phys. Rev. D, 105 (2022) · doi:10.1103/PhysRevD.105.066024
[66] Lee, S-J; Lerche, W.; Weigand, T., Emergent strings from infinite distance limits, JHEP, 02, 190 (2022) · Zbl 1543.81173 · doi:10.1007/JHEP02(2022)190
[67] Klaewer, D.; Lee, S-J; Weigand, T.; Wiesner, M., Quantum corrections in 4d N = 1 infinite distance limits and the weak gravity conjecture, JHEP, 03, 252 (2021) · Zbl 1461.83019 · doi:10.1007/JHEP03(2021)252
[68] Lee, S-J; Lerche, W.; Weigand, T., Modular fluxes, elliptic genera, and weak gravity conjectures in four dimensions, JHEP, 08, 104 (2019) · Zbl 1421.81129 · doi:10.1007/JHEP08(2019)104
[69] M. Wiesner, Light strings and strong coupling in F-theory, to appear. · Zbl 07693976
[70] Berasaluce-Gonzalez, M.; Cámara, PG; Marchesano, F.; Uranga, AM, Z_pcharged branes in flux compactifications, JHEP, 04, 138 (2013) · Zbl 1342.81397 · doi:10.1007/JHEP04(2013)138
[71] Herraez, A.; Ibáñez, LE; Marchesano, F.; Zoccarato, G., The type IIA flux potential, 4-forms and Freed-Witten anomalies, JHEP, 09, 018 (2018) · Zbl 1398.81190 · doi:10.1007/JHEP09(2018)018
[72] G. Dvali, Three-form gauging of axion symmetries and gravity, hep-th/0507215 [INSPIRE].
[73] Kaloper, N.; Sorbo, L., A natural framework for chaotic inflation, Phys. Rev. Lett., 102 (2009) · doi:10.1103/PhysRevLett.102.121301
[74] Marchesano, F.; Shiu, G.; Uranga, AM, F-term axion monodromy inflation, JHEP, 09, 184 (2014) · doi:10.1007/JHEP09(2014)184
[75] Bergshoeff, EA; Hartong, J.; Huebscher, M.; Ortín, T., Stringy cosmic strings in matter coupled N = 2, d = 4 supergravity, JHEP, 05, 033 (2008) · doi:10.1088/1126-6708/2008/05/033
[76] Witten, E., Phases of N = 2 theories in two-dimensions, Nucl. Phys. B, 403, 159 (1993) · Zbl 0910.14020 · doi:10.1016/0550-3213(93)90033-L
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.