×

Finiteness and the swampland. (English) Zbl 1506.81050

Summary: We view and provide further evidence for a number of swampland criteria, including the weak gravity conjecture, distance conjecture and bounds on the finiteness of the quantum gravity vacua from the prism of the finiteness of black hole entropy. Furthermore we propose that at least all of these swampland statements may be more fundamentally a consequence of the finiteness of quantum gravity amplitudes.

MSC:

81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
83C45 Quantization of the gravitational field
83C57 Black holes

References:

[1] Brennan, T. D.; Carta, F.; Vafa, C., The string landscape, the swampland, and the missing corner, PoS, TASI2017, 015 (2017) · doi:10.22323/1.305.0015
[2] Palti, E., The swampland: introduction and review, Fortschr. Phys., 67, 1900037 (2019) · Zbl 1527.83096 · doi:10.1002/prop.201900037
[3] van Beest, M.; Calderón-Infante, J.; Mirfendereski, D.; Valenzuela, I., Lectures on the swampland program in string compactifications (2021)
[4] Graña, M.; Herráez, A., The swampland conjectures: a bridge from quantum gravity to particle physics, Universe, 7, 273 (2021) · doi:10.3390/universe7080273
[5] Arkani-Hamed, N.; Motl, L.; Nicolis, A.; Vafa, C., The string landscape, black holes and gravity as the weakest force, J. High Energy Phys. (2007) · doi:10.1088/1126-6708/2007/06/060
[6] Ooguri, H.; Vafa, C., On the geometry of the string landscape and the swampland, Nucl. Phys. B, 766, 21-33 (2007) · Zbl 1117.81117 · doi:10.1016/j.nuclphysb.2006.10.033
[7] McNamara, J.; Vafa, C., Cobordism classes and the swampland (2019)
[8] Hamada, Y.; Vafa, C., 8D, supergravity reconstruction of internal geometry and the swampland, J. High Energy Phys. (2021) · Zbl 1466.83052 · doi:10.1007/jhep06(2021)178
[9] Bedroya, A.; Hamada, Y.; Montero, M.; Vafa, C., Compactness of brane moduli and the string lamppost principle in d > 6 (2021)
[10] Grimm, T. W.; Palti, E.; Valenzuela, I., Infinite distances in field space and massless towers of states, J. High Energy Phys. (2018) · Zbl 1396.81151 · doi:10.1007/jhep08(2018)143
[11] Heidenreich, B.; Reece, M.; Rudelius, T., Emergence of weak coupling at large distance in quantum gravity, Phys. Rev. Lett., 121 (2018) · doi:10.1103/physrevlett.121.051601
[12] Heidenreich, B.; Reece, M.; Rudelius, T., Sharpening the weak gravity conjecture with dimensional reduction, J. High Energy Phys. (2016) · Zbl 1388.83119 · doi:10.1007/jhep02(2016)140
[13] Heidenreich, B.; Reece, M.; Rudelius, T., Evidence for a sublattice weak gravity conjecture, J. High Energy Phys. (2017) · Zbl 1381.83065 · doi:10.1007/jhep08(2017)025
[14] Andriolo, S.; Junghans, D.; Noumi, T.; Shiu, G., A tower weak gravity conjecture from infrared consistency, Fortschr. Phys., 66, 1800020 (2018) · Zbl 1535.81179 · doi:10.1002/prop.201800020
[15] Cheung, C.; Liu, J.; Remmen, G. N., Proof of the weak gravity conjecture from black hole entropy, J. High Energy Phys. (2018) · Zbl 1402.83054 · doi:10.1007/jhep10(2018)004
[16] Hamada, Y.; Noumi, T.; Shiu, G., Weak gravity conjecture from unitarity and causality, Phys. Rev. Lett., 123 (2019) · doi:10.1103/physrevlett.123.051601
[17] Montero, M., A holographic derivation of the weak gravity conjecture, J. High Energy Phys. (2019) · Zbl 1414.83073 · doi:10.1007/jhep03(2019)157
[18] Arkani-Hamed, N.; Huang, Y-t; Liu, J-Y; Remmen, G. N., Causality, unitarity, and the weak gravity conjecture (2021)
[19] Bonnefoy, Q.; Ciambelli, L.; Lüst, D.; Lüst, S., Infinite black hole entropies at infinite distances and tower of states, Nucl. Phys. B, 958 (2020) · Zbl 1473.83040 · doi:10.1016/j.nuclphysb.2020.115112
[20] Garfinkle, D.; Horowitz, G. T.; Strominger, A., Charged black holes in string theory, Phys. Rev. D, 43, 3140 (1991) · doi:10.1103/physrevd.43.3140
[21] Sen, A., Extremal black holes and elementary string states, Mod. Phys. Lett. A, 10, 2081-2094 (1995) · doi:10.1142/s0217732395002234
[22] Sen, A., Black hole solutions in heterotic string theory on a torus, Nucl. Phys. B, 440, 421-440 (1995) · Zbl 0990.81650 · doi:10.1016/0550-3213(95)00063-x
[23] Gibbons, G. W.; Kallosh, R.; Kol, B., Moduli, scalar charges, and the first law of black hole thermodynamics, Phys. Rev. Lett., 77, 4992-4995 (1996) · doi:10.1103/physrevlett.77.4992
[24] Denef, F., Attractors at weak gravity, Nucl. Phys. B, 547, 201-220 (1999) · Zbl 0943.81032 · doi:10.1016/s0550-3213(99)00096-6
[25] Dall’Agata, G.; Gnecchi, A., Flow equations and attractors for black holes in N = 2 U(1) gauged supergravity, J. High Energy Phys. (2011) · Zbl 1301.81248 · doi:10.1007/JHEP03(2011)037
[26] Denef, F., Supergravity flows and D-brane stability, J. High Energy Phys. (2000) · Zbl 0990.83553 · doi:10.1088/1126-6708/2000/08/050
[27] Draper, P.; Farkas, S., Transplanckian censorship and the local swampland distance conjecture, J. High Energy Phys. (2020) · doi:10.1007/jhep01(2020)133
[28] Dvali, G., Black holes and large N species solution to the hierarchy problem, Fortschr. Phys., 58, 528-536 (2010) · Zbl 1196.81258 · doi:10.1002/prop.201000009
[29] Dvali, G.; Redi, M., Black hole bound on the number of species and quantum gravity at LHC, Phys. Rev. D, 77 (2008) · doi:10.1103/physrevd.77.045027
[30] Wald, R. M., The thermodynamics of black holes, Living Rev. Relativ., 4, 6 (2001) · Zbl 1060.83041 · doi:10.12942/lrr-2001-6
[31] Bousso, R., The holographic principle, Rev. Mod. Phys., 74, 825-874 (2002) · Zbl 1205.83025 · doi:10.1103/revmodphys.74.825
[32] Heidenreich, B.; Reece, M.; Rudelius, T., The weak gravity conjecture and emergence from an ultraviolet cutoff, Eur. Phys. J. C, 78, 337 (2018) · doi:10.1140/epjc/s10052-018-5811-3
[33] Arkani-Hamed, N.; Dimopoulos, S.; Kachru, S., Predictive landscapes and new physics at a TeV (2005)
[34] Harlow, D., Wormholes, emergent gauge fields, and the weak gravity conjecture, J. High Energy Phys. (2016) · Zbl 1388.83255 · doi:10.1007/jhep01(2016)122
[35] Corvilain, P.; Grimm, T. W.; Valenzuela, I., The swampland distance conjecture for Kähler moduli, J. High Energy Phys. (2019) · Zbl 1421.83112 · doi:10.1007/JHEP08(2019)075
[36] Palti, E., The weak gravity conjecture and scalar fields, J. High Energy Phys. (2017) · Zbl 1381.83074 · doi:10.1007/jhep08(2017)034
[37] Heidenreich, B.; Reece, M.; Rudelius, T., Repulsive forces and the weak gravity conjecture, J. High Energy Phys. (2019) · Zbl 1427.83024 · doi:10.1007/jhep10(2019)055
[38] Lee, S-J; Lerche, W.; Weigand, T., A stringy test of the scalar weak gravity conjecture, Nucl. Phys. B, 938, 321-350 (2019) · Zbl 1405.81105 · doi:10.1016/j.nuclphysb.2018.11.001
[39] Gendler, N.; Valenzuela, I., Merging the weak gravity and distance conjectures using BPS extremal black holes, J. High Energy Phys. (2021) · Zbl 1459.83008 · doi:10.1007/jhep01(2021)176
[40] Gibbons, G. W.; Hawking, S. W., Action integrals and partition functions in quantum gravity, Phys. Rev. D, 15, 2752-2756 (1977) · doi:10.1103/physrevd.15.2752
[41] Stout, J., Infinite distance limits and information theory (2021)
[42] Dvali, G.; Gómez, C., Species and strings (2010)
[43] Witten, E., Sigma models and the ADHM construction of instantons, J. Geom. Phys., 15, 215-226 (1995) · Zbl 0816.53050 · doi:10.1016/0393-0440(94)00047-8
[44] Witten, E., Some comments on string dynamics, Strings 95: Future Perspectives in String Theory, 501-523 (1995)
[45] Lee, S-J; Lerche, W.; Weigand, T., Emergent strings from infinite distance limits (2019)
[46] Marchesano, F.; Wiesner, M., Instantons and infinite distances, J. High Energy Phys. (2019) · Zbl 1421.83121 · doi:10.1007/jhep08(2019)088
[47] Baume, F.; Marchesano, F.; Wiesner, M., Instanton corrections and emergent strings, J. High Energy Phys. (2020) · Zbl 1436.83080 · doi:10.1007/jhep04(2020)174
[48] Candelas, P.; Green, P. S.; Hubsch, T., Rolling among Calabi-Yau vacua, Nucl. Phys. B, 330, 49 (1990) · doi:10.1016/0550-3213(90)90302-t
[49] Candelas, P.; De La Ossa, X. C.; Green, P. S.; Parkes, L., A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys. B, 359, 21-74 (1991) · Zbl 1098.32506 · doi:10.1016/0550-3213(91)90292-6
[50] Gopakumar, R.; Vafa, C., M theory and topological strings: I (1998)
[51] Gopakumar, R.; Vafa, C., On the gauge theory/geometry correspondence, Adv. Theor. Math. Phys., 3, 1415-1443 (1999) · Zbl 0972.81135 · doi:10.4310/atmp.1999.v3.n5.a5
[52] Gopakumar, R.; Vafa, C., M theory and topological strings: II (1998)
[53] Córdova, C.; Freed, D. S.; Lam, H. T.; Seiberg, N., Anomalies in the space of coupling constants and their dynamical applications: I, SciPost Phys., 8, 001 (2020) · doi:10.21468/scipostphys.8.1.001
[54] McNamara, J.; Vafa, C., Baby Universes, holography, and the swampland (2020)
[55] Tanizaki, Y.; Ünsal, M., Modified instanton sum in QCD and higher-groups, J. High Energy Phys. (2020) · Zbl 1435.83187 · doi:10.1007/jhep03(2020)123
[56] Heidenreich, B.; McNamara, J.; Montero, M.; Reece, M.; Rudelius, T.; Valenzuela, I., Chern-Weil global symmetries and how quantum gravity avoids them (2020)
[57] Calderón-Infante, J.; Uranga, A. M.; Valenzuela, I., The convex hull swampland distance conjecture and bounds on non-geodesics, J. High Energy Phys. (2021) · Zbl 1461.81077 · doi:10.1007/jhep03(2021)299
[58] Baume, F.; Palti, E., Backreacted axion field ranges in string theory, J. High Energy Phys. (2016) · Zbl 1390.83324 · doi:10.1007/jhep08(2016)043
[59] Valenzuela, I., Backreaction issues in axion monodromy and Minkowski four-forms, J. High Energy Phys. (2017) · doi:10.1007/jhep06(2017)098
[60] Grimm, T. W.; Li, C.; Valenzuela, I., Asymptotic flux compactifications and the swampland, J. High Energy Phys. (2020) · doi:10.1007/jhep06(2020)009
[61] Higuchi, A., Forbidden mass range for spin-2 field theory in de Sitter space-time, Nucl. Phys. B, 282, 397-436 (1987) · doi:10.1016/0550-3213(87)90691-2
[62] Noumi, T.; Takeuchi, T.; Zhou, S., String Regge trajectory on de Sitter space and implications to inflation, Phys. Rev. D, 102 (2020) · doi:10.1103/physrevd.102.126012
[63] Kato, M.; Nishii, K.; Noumi, T.; Takeuchi, T.; Zhou, S., Spiky strings in de Sitter space, J. High Energy Phys. (2021) · Zbl 1466.83126 · doi:10.1007/jhep05(2021)047
[64] Lüst, D.; Palti, E.; Vafa, C., AdS and the swampland, Phys. Lett. B, 797 (2019) · Zbl 1427.81108 · doi:10.1016/j.physletb.2019.134867
[65] Scalisi, M., Inflation, higher spins and the swampland, Phys. Lett. B, 808 (2020) · doi:10.1016/j.physletb.2020.135683
[66] Marchesano, F.; Shiu, G.; Uranga, A. M., F-term axion monodromy inflation, J. High Energy Phys. (2014) · doi:10.1007/jhep09(2014)184
[67] Bielleman, S.; Ibanez, L. E.; Valenzuela, I., Minkowski three-forms, flux string vacua, axion stability and naturalness, J. High Energy Phys. (2015) · doi:10.1007/jhep12(2015)119
[68] Font, A.; Herráez, A.; Ibáñez, L. E., The swampland distance conjecture and towers of tensionless branes, J. High Energy Phys. (2019) · Zbl 1421.81095 · doi:10.1007/jhep08(2019)044
[69] Bedroya, A.; Montero, M.; Vafa, C.; Valenzuela, I., de Sitter bubbles and the swampland (2020)
[70] Rudelius, T., Dimensional reduction and (anti) de Sitter bounds, J. High Energy Phys. (2021) · doi:10.1007/jhep08(2021)041
[71] Gonzalo, E.; Ibáñez, L. E.; Valenzuela, I., AdS swampland conjectures and light fermions, Phys. Lett. B, 822 (2021) · Zbl 07417987 · doi:10.1016/j.physletb.2021.136691
[72] Lanza, S.; Marchesano, F.; Martucci, L.; Valenzuela, I., Swampland conjectures for strings and membranes, J. High Energy Phys. (2021) · Zbl 1460.83101 · doi:10.1007/jhep02(2021)006
[73] Lanza, S.; Marchesano, F.; Martucci, L.; Valenzuela, I., The EFT stringy viewpoint on large distances, J. High Energy Phys. (2021) · Zbl 1472.83108 · doi:10.1007/jhep09(2021)197
[74] Bedroya, A.; Vafa, C., Trans-Planckian censorship and the swampland, J. High Energy Phys. (2020) · Zbl 1454.85006 · doi:10.1007/jhep09(2020)123
[75] Andriot, D.; Cribiori, N.; Erkinger, D., The web of swampland conjectures and the TCC bound, J. High Energy Phys. (2020) · Zbl 1451.83105 · doi:10.1007/jhep07(2020)162
[76] Rudelius, T., Asymptotic observables and the swampland (2021)
[77] Acharya, B. S.; Douglas, M. R., A finite landscape? (2006)
[78] Vafa, C., The string landscape and the swampland (2005)
[79] Reid, M., The moduli space of three-folds with K = 0 may nevertheless be irreducible, Math. Ann., 278, 329-334 (1987) · Zbl 0649.14021 · doi:10.1007/bf01458074
[80] Cheeger, J., Finiteness theorems for Riemannian manifolds, Am. J. Math., 92, 61-74 (1970) · Zbl 0194.52902 · doi:10.2307/2373498
[81] Grimm, T. W., Moduli space holography and the finiteness of flux vacua, J. High Energy Phys. (2021) · Zbl 1476.83137 · doi:10.1007/jhep10(2021)153
[82] Cornwall, J. M.; Levin, D. N.; Tiktopoulos, G., Derivation of gauge invariance from high-energy unitarity bounds on the s matrix, Phys. Rev. D, 10, 1145 (1974) · doi:10.1103/physrevd.10.1145
[83] Llewellyn Smith, C. H., High-energy behavior and gauge symmetry, Phys. Lett. B, 46, 233-236 (1973) · doi:10.1016/0370-2693(73)90692-8
[84] Jonas, C.; Lehners, J-L; Quintin, J., Cosmological consequences of a principle of finite amplitudes, Phys. Rev. D, 103 (2021) · doi:10.1103/physrevd.103.103525
[86] Hollowood, T. J.; Kumar, S. P.; Naqvi, A.; Wild, P., Sym on S^3 with near critical chemical potentials, J. High Energy Phys. (2008) · doi:10.1088/1126-6708/2008/08/046
[87] Bershadsky, M.; Cecotti, S.; Ooguri, H.; Vafa, C., Kodaira-Spencer theory of gravity and exact results for quantum string amplitudes, Commun. Math. Phys., 165, 311-428 (1994) · Zbl 0815.53082 · doi:10.1007/bf02099774
[88] Bershadsky, M.; Cecotti, S.; Ooguri, H.; Vafa, C., Holomorphic anomalies in topological field theories, Nucl. Phys. B, 405, 279-304 (1993) · Zbl 0908.58074 · doi:10.1016/0550-3213(93)90548-4
[89] Strominger, A., Massless black holes and conifolds in string theory, Nucl. Phys. B, 451, 96-108 (1995) · Zbl 0925.83071 · doi:10.1016/0550-3213(95)00287-3
[90] Ong, Y. C.; Yao, Y., Charged particle production rate from cosmic censorship in dilaton black hole spacetimes, J. High Energy Phys. (2019) · Zbl 1427.83050 · doi:10.1007/jhep10(2019)129
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.