×

8d supergravity, reconstruction of internal geometry and the Swampland. (English) Zbl 1466.83052

Summary: We sharpen Swampland constraints on 8d supergravity theories by studying consistency conditions on worldvolume theory of 3-brane probes. Combined with a stronger form of the cobordism conjecture, this leads to the reconstruction of the compact internal geometry and implies strong restrictions on the gauge algebra and on some higher derivative terms (related to the level of the current algebra on the 1-brane). In particular we argue that 8d supergravity theories with \({\mathfrak{g}}_2\) gauge symmetry are in the Swampland. These results provide further evidence for the string lamppost principle in 8d with 16 supercharges.

MSC:

83C57 Black holes
83E30 String and superstring theories in gravitational theory
83E50 Supergravity
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory

References:

[1] C. Vafa, The String landscape and the swampland, hep-th/0509212 [INSPIRE]. · Zbl 1117.81117
[2] T.D. Brennan, F. Carta and C. Vafa, The String Landscape, the Swampland, and the Missing Corner, PoSTASI2017 (2017) 015 [arXiv:1711.00864] [INSPIRE].
[3] Palti, E., The Swampland: Introduction and Review, Fortsch. Phys., 67, 1900037 (2019) · Zbl 1527.83096 · doi:10.1002/prop.201900037
[4] M. van Beest, J. Calderón-Infante, D. Mirfendereski and I. Valenzuela, Lectures on the Swampland Program in String Compactifications, arXiv:2102.01111 [INSPIRE].
[5] Kim, H-C; Shiu, G.; Vafa, C., Branes and the Swampland, Phys. Rev. D, 100, 066006 (2019) · doi:10.1103/PhysRevD.100.066006
[6] Kim, H-C; Tarazi, H-C; Vafa, C., Four-dimensional \(\mathcal{N} = 4\) SYM theory and the swampland, Phys. Rev. D, 102, 026003 (2020) · doi:10.1103/PhysRevD.102.026003
[7] Lee, S-J; Weigand, T., Swampland Bounds on the Abelian Gauge Sector, Phys. Rev. D, 100, 026015 (2019) · doi:10.1103/PhysRevD.100.026015
[8] Katz, S.; Kim, H-C; Tarazi, H-C; Vafa, C., Swampland Constraints on 5d \(\mathcal{N} = 1\) Supergravity, JHEP, 07, 080 (2020) · Zbl 1451.83109 · doi:10.1007/JHEP07(2020)080
[9] Montero, M.; Vafa, C., Cobordism Conjecture, Anomalies, and the String Lamppost Principle, JHEP, 01, 063 (2021) · Zbl 1459.83070 · doi:10.1007/JHEP01(2021)063
[10] J. McNamara and C. Vafa, Cobordism Classes and the Swampland, arXiv:1909.10355 [INSPIRE].
[11] Cvetič, M.; Dierigl, M.; Lin, L.; Zhang, HY, String Universality and Non-Simply-Connected Gauge Groups in 8d, Phys. Rev. Lett., 125, 211602 (2020) · doi:10.1103/PhysRevLett.125.211602
[12] Dierigl, M.; Heckman, JJ, Swampland cobordism conjecture and non-Abelian duality groups, Phys. Rev. D, 103, 066006 (2021) · doi:10.1103/PhysRevD.103.066006
[13] Sezgin, E.; Salam, A., Maximal Extended Supergravity Theory in Seven-dimensions, Phys. Lett. B, 118, 359 (1982) · doi:10.1016/0370-2693(82)90204-0
[14] M. Awada and P.K. Townsend, d = 8 Maxwell-Einstein Supergravity, Phys. Lett. B156 (1985) 51 [INSPIRE].
[15] J. McNamara and C. Vafa, unpublished.
[16] Vafa, C., Evidence for F-theory, Nucl. Phys. B, 469, 403 (1996) · Zbl 1003.81531 · doi:10.1016/0550-3213(96)00172-1
[17] Banks, T.; Douglas, MR; Seiberg, N., Probing F-theory with branes, Phys. Lett. B, 387, 278 (1996) · doi:10.1016/0370-2693(96)00808-8
[18] Dabholkar, A.; Park, J., Strings on orientifolds, Nucl. Phys. B, 477, 701 (1996) · Zbl 0925.81194 · doi:10.1016/0550-3213(96)00395-1
[19] de Boer, J., Triples, fluxes, and strings, Adv. Theor. Math. Phys., 4, 995 (2002) · Zbl 1011.81065 · doi:10.4310/ATMP.2000.v4.n5.a1
[20] W. Taylor, TASI Lectures on Supergravity and String Vacua in Various Dimensions, arXiv:1104.2051 [INSPIRE].
[21] I. Shimada, On elliptic K3 surfaces, math/0505140. · Zbl 1085.14509
[22] Font, A.; Fraiman, B.; Graña, M.; Núñez, CA; De Freitas, HP, Exploring the landscape of heterotic strings on T^d, JHEP, 10, 194 (2020) · doi:10.1007/JHEP10(2020)194
[23] Witten, E., Toroidal compactification without vector structure, JHEP, 02, 006 (1998) · Zbl 0958.81065
[24] Chaudhuri, S.; Hockney, G.; Lykken, JD, Maximally supersymmetric string theories in D < 10, Phys. Rev. Lett., 75, 2264 (1995) · Zbl 1020.81763 · doi:10.1103/PhysRevLett.75.2264
[25] Chaudhuri, S.; Polchinski, J., Moduli space of CHL strings, Phys. Rev. D, 52, 7168 (1995) · doi:10.1103/PhysRevD.52.7168
[26] Mikhailov, A., Momentum lattice for CHL string, Nucl. Phys. B, 534, 612 (1998) · Zbl 1079.81565 · doi:10.1016/S0550-3213(98)00605-1
[27] A. Font, B. Fraiman, M. Graña, C.A. Núñez and H. Parra De Freitas, Exploring the landscape of CHL strings on T^d, arXiv:2104.07131 [INSPIRE].
[28] Aharony, O.; Komargodski, Z.; Patir, A., The Moduli space and M(atrix) theory of 9d N = 1 backgrounds of M/string theory, JHEP, 05, 073 (2007) · doi:10.1088/1126-6708/2007/05/073
[29] Álvarez-Gaumé, L.; Witten, E., Gravitational Anomalies, Nucl. Phys. B, 234, 269 (1984) · doi:10.1016/0550-3213(84)90066-X
[30] Witten, E., Global gravitational anomalies, Commun. Math. Phys., 100, 197 (1985) · Zbl 0581.58038 · doi:10.1007/BF01212448
[31] García-Etxebarria, I.; Hayashi, H.; Ohmori, K.; Tachikawa, Y.; Yonekura, K., 8d gauge anomalies and the topological Green-Schwarz mechanism, JHEP, 11, 177 (2017) · Zbl 1383.83137 · doi:10.1007/JHEP11(2017)177
[32] T. Pantev and E. Sharpe, Notes on gauging noneffective group actions, hep-th/0502027 [INSPIRE]. · Zbl 1390.81615
[33] Pantev, T.; Sharpe, E., String compactifications on Calabi-Yau stacks, Nucl. Phys. B, 733, 233 (2006) · Zbl 1119.81091 · doi:10.1016/j.nuclphysb.2005.10.035
[34] Pantev, T.; Sharpe, E., GLSM’s for Gerbes (and other toric stacks), Adv. Theor. Math. Phys., 10, 77 (2006) · Zbl 1119.14038 · doi:10.4310/ATMP.2006.v10.n1.a4
[35] Hellerman, S.; Henriques, A.; Pantev, T.; Sharpe, E.; Ando, M., Cluster decomposition, T-duality, and gerby CFT’s, Adv. Theor. Math. Phys., 11, 751 (2007) · Zbl 1156.81039 · doi:10.4310/ATMP.2007.v11.n5.a2
[36] Seiberg, N., Modifying the Sum Over Topological Sectors and Constraints on Supergravity, JHEP, 07, 070 (2010) · Zbl 1290.83025 · doi:10.1007/JHEP07(2010)070
[37] Tanizaki, Y.; Ünsal, M., Modified instanton sum in QCD and higher-groups, JHEP, 03, 123 (2020) · Zbl 1435.83187 · doi:10.1007/JHEP03(2020)123
[38] Seiberg, N.; Witten, E., Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B, 431, 484 (1994) · Zbl 1020.81911 · doi:10.1016/0550-3213(94)90214-3
[39] N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation, and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B426 (1994) 19 [Erratum ibid.430 (1994) 485] [hep-th/9407087] [INSPIRE]. · Zbl 0996.81511
[40] Ooguri, H.; Vafa, C., On the Geometry of the String Landscape and the Swampland, Nucl. Phys. B, 766, 21 (2007) · Zbl 1117.81117 · doi:10.1016/j.nuclphysb.2006.10.033
[41] Y. Hamada and C. Vafa, work in progress.
[42] Callan, CG Jr; Harvey, JA; Strominger, A., World sheet approach to heterotic instantons and solitons, Nucl. Phys. B, 359, 611 (1991) · doi:10.1016/0550-3213(91)90074-8
[43] Callan, CG Jr; Harvey, JA; Strominger, A., Worldbrane actions for string solitons, Nucl. Phys. B, 367, 60 (1991) · doi:10.1016/0550-3213(91)90041-U
[44] Witten, E., Small instantons in string theory, Nucl. Phys. B, 460, 541 (1996) · Zbl 0935.81052 · doi:10.1016/0550-3213(95)00625-7
[45] Ganor, OJ; Hanany, A., Small E_8instantons and tensionless noncritical strings, Nucl. Phys. B, 474, 122 (1996) · Zbl 0925.81170 · doi:10.1016/0550-3213(96)00243-X
[46] Seiberg, N.; Witten, E., Comments on string dynamics in six-dimensions, Nucl. Phys. B, 471, 121 (1996) · Zbl 1003.81535 · doi:10.1016/0550-3213(96)00189-7
[47] Beem, C.; Lemos, M.; Liendo, P.; Peelaers, W.; Rastelli, L.; van Rees, BC, Infinite Chiral Symmetry in Four Dimensions, Commun. Math. Phys., 336, 1359 (2015) · Zbl 1320.81076 · doi:10.1007/s00220-014-2272-x
[48] Shimizu, H.; Tachikawa, Y.; Zafrir, G., Anomaly matching on the Higgs branch, JHEP, 12, 127 (2017) · Zbl 1383.83190 · doi:10.1007/JHEP12(2017)127
[49] Beem, C.; Meneghelli, C.; Rastelli, L., Free Field Realizations from the Higgs Branch, JHEP, 09, 058 (2019) · doi:10.1007/JHEP09(2019)058
[50] Beem, C.; Meneghelli, C.; Peelaers, W.; Rastelli, L., VOAs and rank-two instanton SCFTs, Commun. Math. Phys., 377, 2553 (2020) · Zbl 1443.81058 · doi:10.1007/s00220-020-03746-9
[51] Minahan, JA; Nemeschansky, D., An N = 2 superconformal fixed point with E6 global symmetry, Nucl. Phys. B, 482, 142 (1996) · Zbl 0925.81309 · doi:10.1016/S0550-3213(96)00552-4
[52] Minahan, JA; Nemeschansky, D., Superconformal fixed points with E_nglobal symmetry, Nucl. Phys. B, 489, 24 (1997) · Zbl 0925.81382 · doi:10.1016/S0550-3213(97)00039-4
[53] Shapere, AD; Tachikawa, Y., Central charges of N = 2 superconformal field theories in four dimensions, JHEP, 09, 109 (2008) · Zbl 1245.81250 · doi:10.1088/1126-6708/2008/09/109
[54] P. Argyres, M. Lotito, Y. Lü and M. Martone, Geometric constraints on the space of \(\mathcal{N} = 2\) SCFTs. Part III: enhanced Coulomb branches and central charges, JHEP02 (2018) 003 [arXiv:1609.04404] [INSPIRE]. · Zbl 1387.81302
[55] Argyres, PC; Martone, M., 4d \(\mathcal{N} = 2\) theories with disconnected gauge groups, JHEP, 03, 145 (2017) · Zbl 1377.81149 · doi:10.1007/JHEP03(2017)145
[56] Greene, BR; Shapere, AD; Vafa, C.; Yau, S-T, Stringy Cosmic Strings and Noncompact Calabi-Yau Manifolds, Nucl. Phys. B, 337, 1 (1990) · Zbl 0744.53045 · doi:10.1016/0550-3213(90)90248-C
[57] P. Argyres, M. Lotito, Y. Lü and M. Martone, Geometric constraints on the space of \(\mathcal{N} = 2\) SCFTs. Part I: physical constraints on relevant deformations, JHEP02 (2018) 001 [arXiv:1505.04814] [INSPIRE]. · Zbl 1387.81301
[58] Kodaira, K., On Compact Analytic Surfaces: II, Annals Math., 77, 563 (1963) · Zbl 0118.15802 · doi:10.2307/1970131
[59] Kodaira, K., On Compact Analytic Surfaces, III, Annals Math., 78, 1 (1963) · Zbl 0171.19601 · doi:10.2307/1970500
[60] Argyres, PC; Douglas, MR, New phenomena in SU(3) supersymmetric gauge theory, Nucl. Phys. B, 448, 93 (1995) · Zbl 1009.81572 · doi:10.1016/0550-3213(95)00281-V
[61] Argyres, PC; Plesser, MR; Seiberg, N.; Witten, E., New N = 2 superconformal field theories in four-dimensions, Nucl. Phys. B, 461, 71 (1996) · Zbl 1004.81557 · doi:10.1016/0550-3213(95)00671-0
[62] D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 1, Nucl. Phys. B473 (1996) 74 [hep-th/9602114] [INSPIRE]. · Zbl 0925.14007
[63] D.R. Morrison and C. Vafa, Compactifications of F-theory on Calabi-Yau threefolds. 2., Nucl. Phys. B476 (1996) 437 [hep-th/9603161] [INSPIRE]. · Zbl 0925.14007
[64] Witten, E., An SU(2) Anomaly, Phys. Lett. B, 117, 324 (1982) · doi:10.1016/0370-2693(82)90728-6
[65] Bhardwaj, L.; Morrison, DR; Tachikawa, Y.; Tomasiello, A., The frozen phase of F-theory, JHEP, 08, 138 (2018) · Zbl 1396.81147 · doi:10.1007/JHEP08(2018)138
[66] P.C. Argyres, M. Lotito, Y. Lü and M. Martone, Geometric constraints on the space of \(\mathcal{N} = 2\) SCFTs. Part II: construction of special Kähler geometries and RG flows, JHEP02 (2018) 002 [arXiv:1601.00011] [INSPIRE]. · Zbl 1387.81300
[67] Argyres, PC; Lotito, M.; Lü, Y.; Martone, M., Expanding the landscape of \(\mathcal{N} = 2\) rank 1 SCFTs, JHEP, 05, 088 (2016) · Zbl 1388.81758 · doi:10.1007/JHEP05(2016)088
[68] Mack, G., All unitary ray representations of the conformal group SU(2, 2) with positive energy, Commun. Math. Phys., 55, 1 (1977) · Zbl 0352.22012 · doi:10.1007/BF01613145
[69] Dobrev, VK; Petkova, VB, All Positive Energy Unitary Irreducible Representations of Extended Conformal Supersymmetry, Phys. Lett. B, 162, 127 (1985) · doi:10.1016/0370-2693(85)91073-1
[70] Argyres, PC; Lü, Y.; Martone, M., Seiberg-Witten geometries for Coulomb branch chiral rings which are not freely generated, JHEP, 06, 144 (2017) · Zbl 1380.81381 · doi:10.1007/JHEP06(2017)144
[71] Caorsi, M.; Cecotti, S., Geometric classification of 4d \(\mathcal{N} = 2\) SCFTs, JHEP, 07, 138 (2018) · Zbl 1395.81205 · doi:10.1007/JHEP07(2018)138
[72] P.C. Argyres and M. Martone, Scaling dimensions of Coulomb branch operators of 4d \(\mathcal{N} = 2\) superconformal field theories, arXiv:1801.06554 [INSPIRE]. · Zbl 1377.81149
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.