×

Black holes as probes of moduli space geometry. (English) Zbl 07693933

Summary: We argue that supersymmetric BPS states can act as efficient finite energy probes of the moduli space geometry thanks to the attractor mechanism. We focus on 4d \(\mathcal{N} = 2\) compactifications and capture aspects of the effective field theory near the attractor values in terms of physical quantities far away in moduli space. Furthermore, we illustrate how the standard distance in moduli space can be related asymptotically to the black hole mass. We also compute a measure of the resolution with which BPS black holes of a given mass can distinguish far away points in the moduli space. The black hole probes may lead to a deeper understanding of the Swampland constraints on the geometry of the moduli space.

MSC:

83C57 Black holes
83E30 String and superstring theories in gravitational theory
83C47 Methods of quantum field theory in general relativity and gravitational theory
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory

References:

[1] Ooguri, H.; Vafa, C., On the geometry of the string landscape and the swampland, Nucl. Phys. B, 766, 21 (2007) · Zbl 1117.81117 · doi:10.1016/j.nuclphysb.2006.10.033
[2] Nicolis, A., On super-Planckian fields at sub-Planckian energies, JHEP, 07, 023 (2008) · doi:10.1088/1126-6708/2008/07/023
[3] Dolan, MJ; Draper, P.; Kozaczuk, J.; Patel, H., Transplanckian censorship and global cosmic strings, JHEP, 04, 133 (2017) · Zbl 1378.83051 · doi:10.1007/JHEP04(2017)133
[4] Draper, P.; Farkas, S., Transplanckian censorship and the local swampland distance conjecture, JHEP, 01, 133 (2020) · doi:10.1007/JHEP01(2020)133
[5] S. Ferrara, R. Kallosh and A. Strominger, N = 2 extremal black holes, Phys. Rev. D52 (1995) R5412-R5416 [hep-th/9508072] [INSPIRE].
[6] Ferrara, S.; Kallosh, R., Supersymmetry and attractors, Phys. Rev. D, 54, 1514 (1996) · Zbl 1171.83329 · doi:10.1103/PhysRevD.54.1514
[7] Ferrara, S.; Kallosh, R., Universality of supersymmetric attractors, Phys. Rev. D, 54, 1525 (1996) · Zbl 1171.83330 · doi:10.1103/PhysRevD.54.1525
[8] Ferrara, S.; Gibbons, GW; Kallosh, R., Black holes and critical points in moduli space, Nucl. Phys. B, 500, 75 (1997) · Zbl 0935.83022 · doi:10.1016/S0550-3213(97)00324-6
[9] G.W. Moore, Arithmetic and attractors, hep-th/9807087 [YCTP-P17-98] [INSPIRE].
[10] Denef, F.; Greene, BR; Raugas, M., Split attractor flows and the spectrum of BPS D-branes on the quintic, JHEP, 05, 012 (2001) · doi:10.1088/1126-6708/2001/05/012
[11] B.R. Greene, String theory on Calabi-Yau manifolds, in the proceedings of Theoretical Advanced Study Institute in Elementary Particle Physics (TASI ′96): fields, strings, and duality, (1996), p. 543 [hep-th/9702155] [INSPIRE].
[12] L.E. Ibáñez and A.M. Uranga, String theory and particle physics: an introduction to string phenomenology, Cambridge University Press (2012) [INSPIRE]. · Zbl 1260.81001
[13] Candelas, P.; de la Ossa, X., Moduli space of Calabi-Yau manifolds, Nucl. Phys. B, 355, 455 (1991) · Zbl 0732.53056 · doi:10.1016/0550-3213(91)90122-E
[14] J. Polchinski, String theory. Volume 2: superstring theory and beyond, Cambridge University Press (2007) [INSPIRE].
[15] Denef, F., Attractors at weak gravity, Nucl. Phys. B, 547, 201 (1999) · Zbl 0943.81032 · doi:10.1016/S0550-3213(99)00096-6
[16] Denef, F., Supergravity flows and D-brane stability, JHEP, 08, 050 (2000) · Zbl 0990.83553 · doi:10.1088/1126-6708/2000/08/050
[17] Cecotti, S., Special geometry and the swampland, JHEP, 09, 147 (2020) · Zbl 1454.83157 · doi:10.1007/JHEP09(2020)147
[18] H. Ooguri, A. Strominger and C. Vafa, Black hole attractors and the topological string, Phys. Rev. D70 (2004) 106007 [hep-th/0405146] [INSPIRE].
[19] P. Candelas, X.C. De La Ossa, P.S. Green and L. Parkes, A pair of Calabi-Yau manifolds as an exactly soluble superconformal theory, Nucl. Phys. B359 (1991) 21 [INSPIRE]. · Zbl 1098.32506
[20] Candelas, P.; Kuusela, P.; McGovern, J., Attractors with large complex structure for one-parameter families of Calabi-Yau manifolds, JHEP, 11, 032 (2021) · Zbl 1521.83176 · doi:10.1007/JHEP11(2021)032
[21] Lanza, S.; Marchesano, F.; Martucci, L.; Valenzuela, I., The EFT stringy viewpoint on large distances, JHEP, 09, 197 (2021) · Zbl 1472.83108 · doi:10.1007/JHEP09(2021)197
[22] Angius, R., At the end of the world: local dynamical cobordism, JHEP, 06, 142 (2022) · Zbl 1522.81307 · doi:10.1007/JHEP06(2022)142
[23] Q. Bonnefoy, L. Ciambelli, D. Lüst and S. Lüst, Infinite black hole entropies at infinite distances and tower of states, Nucl. Phys. B958 (2020) 115112 [arXiv:1912.07453] [INSPIRE]. · Zbl 1473.83040
[24] D. Lüst, E. Palti and C. Vafa, AdS and the swampland, Phys. Lett. B797 (2019) 134867 [arXiv:1906.05225] [INSPIRE]. · Zbl 1427.81108
[25] Y. Hamada, M. Montero, C. Vafa and I. Valenzuela, Finiteness and the swampland, J. Phys. A55 (2022) 224005 [arXiv:2111.00015] [INSPIRE]. · Zbl 1506.81050
[26] J. Stout, Infinite distance limits and information theory, arXiv:2106.11313 [INSPIRE].
[27] J. Stout, Infinite distances and factorization, arXiv:2208.08444 [INSPIRE].
[28] Grimm, TW, Moduli space holography and the finiteness of flux vacua, JHEP, 10, 153 (2021) · Zbl 1476.83137 · doi:10.1007/JHEP10(2021)153
[29] Grimm, TW; Monnee, J.; van de Heisteeg, D., Bulk reconstruction in moduli space holography, JHEP, 05, 010 (2022) · Zbl 1522.83387 · doi:10.1007/JHEP05(2022)010
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.