×

Homogeneous additive congruences. (English) Zbl 1498.11105

Summary: For prime power \(p^n\), let \(\Theta (k, p^n)\) denote the minimal \(s\) such that for any integers \(a_i\) coprime to \(p\) the congruence \[a_1 x_1^k + a_2 x_2^k + \cdots + a_s x_s^k \equiv 0\;(\mathrm{mod}\;p^n)\] has a primitive solution (\(p\nmid x_i\) for some \(i\)), and \(\Theta^* (k, p^n)\) the minimal \(s\) such that there is always a solution with \(p\nmid x_i\) for all \(i\), \(1 \leq i \leq s\). We obtain a number of estimates for these two quantities when the group \(A\) of \(k\)-th powers mod \(p\) has at least two elements, including, \(\Theta (k, p) \ll \log^3 k, \Theta (k, p) \ll \log^{5 / 2} k\) if \(|A|\) is composite, \(\Theta (k, p^n) \ll k^{\sqrt{5} / \sqrt{\log_2 k}} \log^2 k, \Theta^* (k, p^n) \leq 8k^{5 / \log_{2} (t_{1} /C)}\) for some absolute constant \(C\), where \(t_1 = (p - 1) / (p - 1, k) > C\), and \(\Theta^* (k, p) \leq 8\) for \(p > 6k^2\).

MSC:

11D79 Congruences in many variables
11P05 Waring’s problem and variants

References:

[1] A. Alnaser and T. Cochrane, “Waring’s number mod \[m\]”, J. Number Theory 128:9 (2008), 2582-2590. · Zbl 1217.11086 · doi:10.1016/j.jnt.2008.03.006
[2] A. Alnaser, T. Cochrane, M. Ostergaard, and C. Spencer, “Waring numbers for diagonal congruences”, Rocky Mountain J. Math. 50:3 (2020), 825-838. · Zbl 1453.11124 · doi:10.1216/rmj.2020.50.825
[3] B. C. Berndt, R. J. Evans, and K. S. Williams, Gauss and Jacobi sums, Wiley, New York, 1998. · Zbl 0906.11001
[4] J. Bourgain, “Multilinear exponential sums in prime fields under optimal entropy condition on the sources”, Geom. Funct. Anal. 18:5 (2009), 1477-1502. · Zbl 1162.11043 · doi:10.1007/s00039-008-0691-6
[5] J. Bourgain and S. V. Konyagin, “Estimates for the number of sums and products and for exponential sums over subgroups in fields of prime order”, C. R. Math. Acad. Sci. Paris 337:2 (2003), 75-80. · Zbl 1041.11056 · doi:10.1016/S1631-073X(03)00281-4
[6] I. Chowla, “A theorem on the addition of residue classes: application to the number \[\Gamma(k)\] in Waring’s problem”, Proc. Indian Acad. Sci. Section A 1 (1935), 242-243. · JFM 61.0149.03
[7] S. Chowla, “Some results in number-theory”, Norske Vid. Selsk. Forh. Trondheim 33 (1960), 43-44. · Zbl 0100.27001
[8] S. Chowla, H. B. Mann, and E. G. Straus, “Some applications of the Cauchy-Davenport theorem”, Norske Vid. Selsk. Forh. Trondheim 32 (1959), 74-80. · Zbl 0109.03206
[9] S. Chowla and G. Shimura, “On the representation of zero by a linear combination of the \[k\]-th powers”, Norske Vid. Selsk. Forh. (Trondheim) 36 (1963), 169-176. · Zbl 0119.04405
[10] T. Cochrane, “Exponential sums over groups of small order”, preprint, 2021. · Zbl 0856.11037
[11] T. Cochrane and C. Pinner, “Sum-product estimates applied to Waring’s problem mod \[p\]”, Integers 8 (2008), art. id. 46. · Zbl 1205.11108
[12] T. Cochrane and C. Pinner, “Diagonal congruences over finite fields”, preprint, 2021. · Zbl 1241.11098
[13] T. Cochrane, C. Pinner, and J. Rosenhouse, “Bounds on exponential sums and the polynomial Waring problem mod \[p\]”, J. London Math. Soc. (2) 67:2 (2003), 319-336. · Zbl 1106.11032 · doi:10.1112/S0024610702004040
[14] T. Cochrane, D. Hart, C. Pinner, and C. Spencer, “Waring’s number for large subgroups of \[\mathbb Z^*_p\]”, Acta Arith. 163:4 (2014), 309-325. · Zbl 1314.11051 · doi:10.4064/aa163-4-2
[15] H. Davenport and D. J. Lewis, “Homogeneous additive equations”, Proc. Roy. Soc. London Ser. A 274 (1963), 443-460. · Zbl 0118.28002 · doi:10.1098/rspa.1963.0143
[16] M. M. Dodson, “Homogeneous additive congruences”, Philos. Trans. Roy. Soc. London Ser. A 261 (1967), 163-210. · Zbl 0139.27102 · doi:10.1098/rsta.1967.0002
[17] M. M. Dodson, “On Waring’s problem in \[{\rm GF}[p]\]”, Acta Arith. 19 (1971), 147-173. · Zbl 0221.10019 · doi:10.4064/aa-19-2-147-173
[18] M. M. Dodson, “On a function due to S. Chowla”, J. Number Theory 5:4 (1973), 287-292. · Zbl 0261.10002 · doi:10.1016/0022-314X(73)90072-3
[19] P. Erdős and R. Rado, “Intersection theorems for systems of sets”, J. London Math. Soc. 35 (1960), 85-90. · Zbl 0103.27901 · doi:10.1112/jlms/s1-35.1.85
[20] P. Erdős, C. Pomerance, and E. Schmutz, “Carmichael’s lambda function”, Acta Arith. 58:4 (1991), 363-385. · Zbl 0734.11047 · doi:10.4064/aa-58-4-363-385
[21] A. A. Glibichuk, “Combinatorial properties of sets of residues modulo a prime and the Erdős-Graham problem”, Mat. Zametki 79:3 (2006), 384-395. In Russian; translated in Math. Notes 79 (2006), 356-365. · Zbl 1129.11004 · doi:10.1007/s11006-006-0040-8
[22] H. Godinho, M. P. Knapp, P. H. A. Rodrigues, and D. Veras, “On the values of \[\Gamma^*(k,p)\] and \[\Gamma^*(k)\]”, Acta Arith. 191:1 (2019), 67-80. · Zbl 1455.11058 · doi:10.4064/aa180613-4-1
[23] G. H. Hardy and J. E. Littlewood, “Some problems of ‘Partitio Numerorum’, IV: The singular series in Waring’s Problem and the value of the number \[G(k)\]”, Math. Z. 12:1 (1922), 161-188. · JFM 48.0146.01 · doi:10.1007/BF01482074
[24] H. Heilbronn, “Lecture notes on additive number theory mod p”, 1964.
[25] L. K. Hua and H. S. Vandiver, “Characters over certain types of rings with applications to the theory of equations in a finite field”, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 94-99. · Zbl 0032.39102 · doi:10.1073/pnas.35.2.94
[26] M. P. Knapp, “Exact values of the function \[\Gamma^*(k)\]”, J. Number Theory 131:10 (2011), 1901-1911. · Zbl 1241.11040 · doi:10.1016/j.jnt.2011.04.006
[27] S. V. Konyagin, “Estimates for Gaussian sums and Waring’s problem modulo a prime”, Trudy Mat. Inst. Steklov. 198 (1992), 111-124. In Russian; translated in Proc. Steklov Inst. Math. 198 (1992), 105-117. · Zbl 0820.11048
[28] S. V. Konyagin and I. E. Shparlinski, Character sums with exponential functions and their applications, Cambridge Tracts in Mathematics 136, Cambridge University Press, 1999. · Zbl 0933.11001 · doi:10.1017/CBO9780511542930
[29] R. Lidl and H. Niederreiter, Finite fields, Encyclopedia of Mathematics and its Applications 20, Addison-Wesley, Reading, MA, 1983. · Zbl 0554.12010
[30] H. L. Montgomery, R. C. Vaughan, and T. D. Wooley, “Some remarks on Gauss sums associated with \[k\]-th powers”, Math. Proc. Cambridge Philos. Soc. 118:1 (1995), 21-33. · Zbl 0835.11032 · doi:10.1017/S0305004100073424
[31] K. K. Norton, On homogeneous diagonal congruences of odd degree, doctoral dissertation, University of Illinois, 1966.
[32] J. B. Rosser and L. Schoenfeld, “Approximate formulas for some functions of prime numbers”, Illinois J. Math. 6 (1962), 64-94. · Zbl 0122.05001
[33] I. D. Shkredov, “Some new inequalities in additive combinatorics”, Mosc. J. Comb. Number Theory 3:3-4 (2013), 189-239. · Zbl 1382.11017
[34] I. D. Shkredov, “On exponential sums over multiplicative subgroups of medium size”, Finite Fields Appl. 30 (2014), 72-87. · Zbl 1300.11085 · doi:10.1016/j.ffa.2014.06.002
[35] Y. N. Shteǐnikov, “Estimates of trigonometric sums over subgroups and some of their applications”, Mat. Zametki 98:4 (2015), 606-625. · Zbl 1358.11094 · doi:10.4213/mzm10629
[36] A. Tietäväinen, “On a homogeneous congruence of odd degree”, Ann. Univ. Turku. Ser. A. I 131 (1969), 3-6. · Zbl 0185.10801
[37] A. Tietäväinen, “On a problem of Chowla and Shimura”, J. Number Theory 3 (1971), 247-252. · Zbl 0213.05203 · doi:10.1016/0022-314X(71)90042-4
[38] A. Tietäväinen, “Proof of a conjecture of S. Chowla”, J. Number Theory 7:3 (1975), 353-356 · Zbl 0289.10033 · doi:10.1016/0022-314X(75)90026-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.