×

Waring’s number mod \(m\). (English) Zbl 1217.11086

Summary: Let \(p\) be an odd prime and \(\gamma (k,p^n)\) be the smallest positive integer \(s\) such that every integer is a sum of \(s\) \(k\)th powers (mod \(p^n\)). We establish \(\gamma (k,p^n)\leq [k/2]+2\) and \(\gamma (k,p^n)\ll \sqrt k\) provided that \(k\) is not divisible by \((p - 1)/2\). Next, let \(t=(p - 1)/(p - 1,k)\), and \(q\) be any positive integer. We show that if \(\phi(t)\geq q\) then \(\gamma (k,p^n)\leq c(q)k^{1/q}\) for some constant \(c(q)\). These results generalize results known for the case of prime moduli.

MSC:

11P05 Waring’s problem and variants
Full Text: DOI

References:

[1] Benschop, N. F., Powersums representing residues mod \(p^k\), from Fermat to Waring (17 March 2001), pp. 1-9
[2] Bhaskaran, M., Sums of \(p\) th powers in a \(P\)-adic ring, Acta Arith., 15, 217-219 (1969) · Zbl 0179.07803
[3] Bovey, J. D., A note on Waring’s problem in \(p\)-adic fields, Acta Arith., 29, 343-351 (1976) · Zbl 0336.10014
[4] Bovey, J. D., A new upper bound for Waring’s problem \((mod p)\), Acta Arith., 32, 157-162 (1977) · Zbl 0355.10018
[5] Cauchy, A., Recherches sur les nombres, J. Ecole Polytech., 9, 99-116 (1813)
[6] Chowla, I., On Waring’s problem \((mod p)\), Proc. Indian Nat. Sci. Acad. Part A, 13, 195-220 (1943) · Zbl 0063.00869
[7] Chowla, S.; Mann, H. B.; Straus, E. G., Some applications of the Cauchy-Davenport theorem, Norske Vid. Selsk. Forh. Trondheim, 32, 74-80 (1959) · Zbl 0109.03206
[8] Cipra, J. A.; Cochrane, T.; Pinner, C., Heilbronn’s conjecture on Waring’s number \((mod p)\), J. Number Theory, 125, 2, 289-297 (2007) · Zbl 1185.11025
[9] T. Cochrane, C. Pinner, Sum-product estimates applied to Waring’s problem \(\operatorname{mod} p\), preprint, 2008; T. Cochrane, C. Pinner, Sum-product estimates applied to Waring’s problem \(\operatorname{mod} p\), preprint, 2008 · Zbl 1205.11108
[10] Dodson, M. M., On Waring’s problem in \(p\)-adic fields, Acta Arith., 22, 315-327 (1973) · Zbl 0223.10040
[11] Hardy, G. H.; Littlewood, J. E., Some problems of “Partitio Numerorum”, IV: The singular series in Waring’s problem and the value of the number \(G(k)\), Math. Z., 12, 161-188 (1922) · JFM 48.0146.01
[12] H. Heilbronn, Lecture Notes on Additive Number Theory \(\operatorname{mod} p\), California Institute of Technology, 1964; H. Heilbronn, Lecture Notes on Additive Number Theory \(\operatorname{mod} p\), California Institute of Technology, 1964
[13] Konyagin, S. V., On estimates of Gaussian sums and Waring’s problem for a prime modulus, Tr. Mat. Inst. Steklova. Tr. Mat. Inst. Steklova, Proc. Steklov Inst. Math., 1, 105-117 (1994), (English trans.)
[14] Landau, E., Ueber einige Fortschritte der additiven Zahlentheorie (1937), Cambridge Univ. Press · JFM 63.0129.02
[15] Small, C., Waring’s problem \(mod n\), Amer. Math. Monthly, 84, 1, 12-25 (1977) · Zbl 0353.10017
[16] Small, C., Solution of Waring’s problem \(mod n\), Amer. Math. Monthly, 84, 5, 356-359 (1977) · Zbl 0391.10018
[17] Subocz, J., A note on Waring’s number modulo \(2^n\), Divulg. Mat., 7, 1, 13-18 (1999) · Zbl 0964.11043
[18] Voloch, J. F., On the \(p\)-adic Waring’s problem, Acta Arith., 90, 1, 91-95 (1999) · Zbl 0932.11074
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.