×

Bounds on fewnomial exponential sums over \(\mathbb Z_p\). (English) Zbl 1241.11098

Let \(p\) be a prime, let \(f(x)=a_1x^{k_1} + \dots + a_rx^{k_r}\) (\(a_i, k_i \in {\mathbb Z}\)) be a Laurent polynomial, and let \(\chi\) be a multiplicative character mod \(p\). The authors obtain several new Mordell-type bounds for the mixed exponential sum \[ S(\chi, f) = \sum_{x=1}^{p-1} \chi(x) \exp(2\pi i f(x)/p), \] which are particularly effective when \(\gcd(k_i, p-1)\) is large for several values of \(i\). When \(p \nmid a_1 \cdots a_r\) and the \(k_i\) are distinct mod \(p-1\), bounds stemming from the methods of A. Weil [Proc. Natl. Acad. Sci. USA 34, 204–207 (1948; Zbl 0032.26102)] take the shape \(|S(\chi, f)| \leq D p^{1/2}\), where \(D=\max\{|k_i|, |k_i-k_j|\}\).
The most general versions of the authors’ results are rather lengthy to state, so we instead mention two special cases of interest. Write \(f_1(x)=ax^k + h(x^d)\) and \(f_2(x)=ax^k+bx^{-k}+h(x^d)\), where \(d\mid (p-1)\), \((k,p-1)=1\), \(p \nmid ab\), and where \(h\) is any Laurent polynomial. Then the authors prove in particular that \[ |S(\chi,f_1)| \leq p d^{-1/2} \quad \text{and} \quad |S(\chi, f_2)| \leq p d^{-1/2} + \sqrt{2} p^{3/4}. \] One strategy involves relating bounds for \(S\) to the number of solutions of associated systems of congruences and applying a result of T. D. Wooley [J.Aust.Math.Soc.88, No. 2, 261–275 (2010; Zbl 1231.11042)]. In another approach, the authors establish a reduction formula that successively exploits collections of exponents having a common factor before benignly inserting the Weil bound at the final stage.

MSC:

11L07 Estimates on exponential sums
11T23 Exponential sums
Full Text: DOI

References:

[1] Perel’muter, Mat. Zametki 5 pp 373– (1969)
[2] DOI: 10.1093/qmath/os-3.1.161 · Zbl 0005.24603 · doi:10.1093/qmath/os-3.1.161
[3] DOI: 10.1007/BF02564120 · JFM 53.0155.01 · doi:10.1007/BF02564120
[4] Cochrane, J. Théor. Nombres Bordeaux 18 pp 59– (2006) · Zbl 1184.11012 · doi:10.5802/jtnb.533
[5] DOI: 10.4064/aa116-1-4 · Zbl 1082.11050 · doi:10.4064/aa116-1-4
[6] DOI: 10.1073/pnas.34.5.204 · Zbl 0032.26102 · doi:10.1073/pnas.34.5.204
[7] DOI: 10.1090/S0002-9939-00-05441-1 · Zbl 0991.11065 · doi:10.1090/S0002-9939-00-05441-1
[8] DOI: 10.1007/978-3-540-72053-9_6 · Zbl 1131.11078 · doi:10.1007/978-3-540-72053-9_6
[9] Akuliničev, Dokl. Acad. Sci. USSR 161 pp 743– (1965)
[10] Yu, Math. Proc. Cam. Phil. Soc. 131 pp 321– (2001) · Zbl 0993.11040 · doi:10.1017/S030500410100528X
[11] DOI: 10.1017/S1446788710000121 · Zbl 1231.11042 · doi:10.1017/S1446788710000121
[12] DOI: 10.1090/S0002-9939-04-07726-3 · Zbl 1068.11053 · doi:10.1090/S0002-9939-04-07726-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.