×

Waring numbers for diagonal congruences. (English) Zbl 1453.11124

Let \(g\) b the smallest positive integer such that every element of \(A = \mathbb{Z}/ p^n \mathbb{Z}\) is of the form \(\sum_{j=1}^s a_j x_j^k\) for some \(x_j \in A\), given \(a_j \in A\) and given \(k\). The \(x_j\)’s are required also to be outside the range of the canonical map \(A \mapsto B\) where \(B= \mathbb{Z}/ p \mathbb{Z}\). Let \(G(k)\) be the subgroup of \(k\)-th powers of elements of \(B\). Depending on the size of \(G(k)\) the authors give an upper bound for \(g\). When \(\vert G(k)\vert \geq 2\) the upper bound equals \(\lceil (1+\frac{1}{p-1})k \rceil\). Under some technical conditions on \(k\) the upper bound is sharpened.

MSC:

11P05 Waring’s problem and variants
11D79 Congruences in many variables
11P55 Applications of the Hardy-Littlewood method

References:

[1] A. Alnaser and T. Cochrane, “Waring”s number mod \(m\)”, J. Number Theory 128:9 (2008), 2582-2590. · Zbl 1217.11086 · doi:10.1016/j.jnt.2008.03.006
[2] J. D. Bovey, “A note on Waring”s problem in \(p\)-adic fields”, Acta Arith. 29:4 (1976), 343-351. · Zbl 0336.10014 · doi:10.4064/aa-29-4-343-351
[3] J. D. Bovey, “A new upper bound for Waring”s problem \(({\rm mod} p)\)”, Acta Arith. 32:2 (1977), 157-162. · Zbl 0355.10018 · doi:10.4064/aa-32-2-157-162
[4] A.-L. Cauchy, “Recherches sur les nombres”, J. École Polytechnique 9:XVI (1813), 99-116.
[5] I. Chowla, “A theorem on the addition of residue classes: application to the number \(\Gamma(k)\) in Waring”s problem”, Proc. Indian Acad. Sci., Sect. A 2 (1935), 242-243. · Zbl 0012.24701
[6] I. Chowla, “On Waring”s problem (mod \(p)\)”, Proc. Nat. Acad. Sci. India Sect. A 13 (1943), 195-220. · Zbl 0063.00869
[7] J. A. Cipra, T. Cochrane, and C. Pinner, “Heilbronn”s conjecture on Waring’s number (mod \(p)\)”, J. Number Theory 125:2 (2007), 289-297. · Zbl 1185.11025 · doi:10.1016/j.jnt.2006.12.001
[8] T. Cochrane and C. Pinner, “Sum-product estimates applied to Waring”s problem mod \(p\)”, Integers 8 (2008), art. id. A46. · Zbl 1205.11108
[9] T. Cochrane, C. Pinner, and J. Rosenhouse, “Bounds on exponential sums and the polynomial Waring problem mod \(p\)”, J. London Math. Soc. \((2) 67\):2 (2003), 319-336. · Zbl 1106.11032 · doi:10.1112/S0024610702004040
[10] T. Cochrane, D. Hart, C. Pinner, and C. Spencer, “Waring”s number for large subgroups of \(\mathbb{Z}^*_p\)”, Acta Arith. 163:4 (2014), 309-325. · Zbl 1314.11051 · doi:10.4064/aa163-4-2
[11] M. M. Dodson, “On Waring”s problem in \(p\)-adic fields”, Acta Arith. 22 (1972/73), 315-327. · Zbl 0223.10040 · doi:10.4064/aa-22-3-315-327
[12] M. M. Dodson and A. Tietäväinen, “A note on Waring”s problem in \({\rm GF}(p)\)”, Acta Arith. 30:2 (1976), 159-167. · Zbl 0289.10032 · doi:10.4064/aa-30-2-159-167
[13] G. H. Hardy and J. E. Littlewood, “Some problems of ‘Partitio Numerorum”, IV: The singular series in Waring’s problem and the value of the number \(G(k)\)”, Math. Z. 12:1 (1922), 161-188. · JFM 48.0146.01 · doi:10.1007/BF01482074
[14] H. Heilbronn, “Lecture notes on additive number theory mod p”, California Institute of Technology, 1964.
[15] L. K. Hua, Additive theory of prime numbers, Translations of Mathematical Monographs 13, Amer. Math. Soc., Providence, RI, 1965. · Zbl 0192.39304
[16] L. K. Hua and H. S. Vandiver, “Characters over certain types of rings with applications to the theory of equations in a finite field”, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 94-99. · Zbl 0032.39102 · doi:10.1073/pnas.35.2.94
[17] S. V. Konyagin, “Estimates for Gaussian sums and Waring”s problem modulo a prime”, Trudy Mat. Inst. Steklov. 198 (1992), 111-124. In Russian; translated in Proc. Steklov Inst. Math. 198:1 (1994), 105-117. · Zbl 0820.11048
[18] E. Landau, Über einige neuere Fortschritte der additiven Zahlentheorie, Camb. Tracts Math. Math. Phys. 35, Cambridge Univ. Press, 1937. · JFM 63.0129.02
[19] A. Tietäväinen, “Note on Waring”s problem \(({\rm mod}\,p)\)”, Ann. Acad. Sci. Fenn. Ser. A. I. 554 (1973), 1-7. · Zbl 0264.10039
[20] A. · Zbl 0032.39402 · doi:10.1090/S0002-9904-1949-09219-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.