×

Linking the singularities of cosmological correlators. (English) Zbl 1531.83108

Summary: Much of the structure of cosmological correlators is controlled by their singularities, which in turn are fixed in terms of flat-space scattering amplitudes. An important challenge is to interpolate between the singular limits to determine the full correlators at arbitrary kinematics. This is particularly relevant because the singularities of correlators are not directly observable, but can only be accessed by analytic continuation. In this paper, we study rational correlators – including those of gauge fields, gravitons, and the inflaton – whose only singularities at tree level are poles and whose behavior away from these poles is strongly constrained by unitarity and locality. We describe how unitarity translates into a set of cutting rules that consistent correlators must satisfy, and explain how this can be used to bootstrap correlators given information about their singularities. We also derive recursion relations that allow the iterative construction of more complicated correlators from simpler building blocks. In flat space, all energy singularities are simple poles, so that the combination of unitarity constraints and recursion relations provides an efficient way to bootstrap the full correlators. In many cases, these flat-space correlators can then be transformed into their more complex de Sitter counterparts. As an example of this procedure, we derive the correlator associated to graviton Compton scattering in de Sitter space, though the methods are much more widely applicable.

MSC:

83C75 Space-time singularities, cosmic censorship, etc.
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
83F05 Relativistic cosmology
83C45 Quantization of the gravitational field
81U20 \(S\)-matrix theory, etc. in quantum theory
83E05 Geometrodynamics and the holographic principle

References:

[1] C. Cheung, TASI Lectures on Scattering Amplitudes, in Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics : Anticipating the Next Discoveries in Particle Physics (TASI 2016): Boulder, CO, U.S.A., June 6 - July 1 2016, R. Essig and I. Low, eds., pp. 571-623 (2018) [DOI] [arXiv:1708.03872] [INSPIRE]. · Zbl 1397.81423
[2] P. Benincasa and F. Cachazo, Consistency Conditions on the S-matrix of Massless Particles, arXiv:0705.4305 [INSPIRE].
[3] Schuster, PC; Toro, N., Constructing the Tree-Level Yang-Mills S-matrix Using Complex Factorization, JHEP, 06, 079 (2009) · doi:10.1088/1126-6708/2009/06/079
[4] D.A. McGady and L. Rodina, Higher-spin massless S-matrices in four-dimensions, Phys. Rev. D90 (2014) 084048 [arXiv:1311.2938] [INSPIRE].
[5] A.H. Guth, The Inflationary Universe: A Possible Solution to the Horizon and Flatness Problems, Phys. Rev. D23 (1981) 347 [INSPIRE]. · Zbl 1371.83202
[6] A.D. Linde, A New Inflationary Universe Scenario: A Possible Solution of the Horizon, Flatness, Homogeneity, Isotropy and Primordial Monopole Problems, Phys. Lett. B108 (1982) 389 [INSPIRE].
[7] A. Albrecht and P.J. Steinhardt, Cosmology for Grand Unified Theories with Radiatively Induced Symmetry Breaking, Phys. Rev. Lett.48 (1982) 1220 [INSPIRE].
[8] D. Baumann, Inflation, in Theoretical Advanced Study Institute in Elementary Particle Physics: Physics of the Large and the Small, World Scientific, Singapore (2011), pp. 523-686, DOI [arXiv:0907.5424] [INSPIRE]. · Zbl 1241.83003
[9] Arkani-Hamed, N.; Baumann, D.; Lee, H.; Pimentel, GL, The Cosmological Bootstrap: Inflationary Correlators from Symmetries and Singularities, JHEP, 04, 105 (2020) · Zbl 1436.85001 · doi:10.1007/JHEP04(2020)105
[10] D. Baumann, C. Duaso Pueyo, A. Joyce, H. Lee and G.L. Pimentel, The cosmological bootstrap: weight-shifting operators and scalar seeds, JHEP12 (2020) 204 [arXiv:1910.14051] [INSPIRE].
[11] D. Baumann, C. Duaso Pueyo, A. Joyce, H. Lee and G.L. Pimentel, The Cosmological Bootstrap: Spinning Correlators from Symmetries and Factorization, SciPost Phys.11 (2021) 071 [arXiv:2005.04234] [INSPIRE].
[12] N. Arkani-Hamed, P. Benincasa and A. Postnikov, Cosmological Polytopes and the Wavefunction of the Universe, arXiv:1709.02813 [INSPIRE].
[13] N. Arkani-Hamed and P. Benincasa, On the Emergence of Lorentz Invariance and Unitarity from the Scattering Facet of Cosmological Polytopes, arXiv:1811.01125 [INSPIRE].
[14] P. Benincasa, From the flat-space S-matrix to the Wavefunction of the Universe, arXiv:1811.02515 [INSPIRE]. · Zbl 1254.81087
[15] P. Benincasa, Cosmological Polytopes and the Wavefuncton of the Universe for Light States, arXiv:1909.02517 [INSPIRE].
[16] Albayrak, S.; Kharel, S., Towards the higher point holographic momentum space amplitudes, JHEP, 02, 040 (2019) · Zbl 1411.81166
[17] Sleight, C., A Mellin Space Approach to Cosmological Correlators, JHEP, 01, 090 (2020) · Zbl 1434.81117 · doi:10.1007/JHEP01(2020)090
[18] Sleight, C.; Taronna, M., Bootstrapping Inflationary Correlators in Mellin Space, JHEP, 02, 098 (2020) · Zbl 1435.81174 · doi:10.1007/JHEP02(2020)098
[19] Albayrak, S.; Chowdhury, C.; Kharel, S., New relation for Witten diagrams, JHEP, 10, 274 (2019) · Zbl 1427.81110 · doi:10.1007/JHEP10(2019)274
[20] S. Albayrak and S. Kharel, Towards the higher point holographic momentum space amplitudes. Part II. Gravitons, JHEP12 (2019) 135 [arXiv:1908.01835] [INSPIRE]. · Zbl 1411.81166
[21] A. Hillman, Symbol Recursion for the dS Wave Function, arXiv:1912.09450 [INSPIRE].
[22] C. Sleight and M. Taronna, From AdS to dS exchanges: Spectral representation, Mellin amplitudes, and crossing, Phys. Rev. D104 (2021) L081902 [arXiv:2007.09993] [INSPIRE]. · Zbl 1521.81269
[23] S. Albayrak, C. Chowdhury and S. Kharel, Study of momentum space scalar amplitudes in AdS spacetime, Phys. Rev. D101 (2020) 124043 [arXiv:2001.06777] [INSPIRE].
[24] P. Benincasa, A.J. McLeod and C. Vergu, Steinmann Relations and the Wavefunction of the Universe, Phys. Rev. D102 (2020) 125004 [arXiv:2009.03047] [INSPIRE].
[25] Goodhew, H.; Jazayeri, S.; Pajer, E., The Cosmological Optical Theorem, JCAP, 04, 021 (2021) · Zbl 1485.83139 · doi:10.1088/1475-7516/2021/04/021
[26] Armstrong, C.; Lipstein, AE; Mei, J., Color/kinematics duality in AdS_4, JHEP, 02, 194 (2021) · Zbl 1460.81104 · doi:10.1007/JHEP02(2021)194
[27] Albayrak, S.; Kharel, S.; Meltzer, D., On duality of color and kinematics in (A)dS momentum space, JHEP, 03, 249 (2021) · Zbl 1461.81102 · doi:10.1007/JHEP03(2021)249
[28] D. Meltzer, Dispersion Formulas in QFTs, CFTs, and Holography, JHEP05 (2021) 098 [arXiv:2103.15839] [INSPIRE]. · Zbl 1466.81053
[29] Sleight, C.; Taronna, M., On the consistency of (partially-)massless matter couplings in de Sitter space, JHEP, 10, 156 (2021) · doi:10.1007/JHEP10(2021)156
[30] C. Corianò, L. Delle Rose, E. Mottola and M. Serino, Solving the Conformal Constraints for Scalar Operators in Momentum Space and the Evaluation of Feynman’s Master Integrals, JHEP07 (2013) 011 [arXiv:1304.6944] [INSPIRE]. · Zbl 1342.81138
[31] Corianò, C.; Maglio, MM; Theofilopoulos, D., Four-Point Functions in Momentum Space: Conformal Ward Identities in the Scalar/Tensor case, Eur. Phys. J. C, 80, 540 (2020) · doi:10.1140/epjc/s10052-020-8089-1
[32] Corianò, C.; Maglio, MM, On Some Hypergeometric Solutions of the Conformal Ward Identities of Scalar 4-point Functions in Momentum Space, JHEP, 09, 107 (2019) · Zbl 1423.81156 · doi:10.1007/JHEP09(2019)107
[33] Bzowski, A.; McFadden, P.; Skenderis, K., Implications of conformal invariance in momentum space, JHEP, 03, 111 (2014) · Zbl 1406.81082 · doi:10.1007/JHEP03(2014)111
[34] A. Bzowski, P. McFadden and K. Skenderis, Conformal n-point functions in momentum space, Phys. Rev. Lett.124 (2020) 131602 [arXiv:1910.10162] [INSPIRE]. · Zbl 1406.81082
[35] Isono, H.; Noumi, T.; Shiu, G., Momentum space approach to crossing symmetric CFT correlators, JHEP, 07, 136 (2018) · Zbl 1395.81228 · doi:10.1007/JHEP07(2018)136
[36] H. Isono, T. Noumi and G. Shiu, Momentum space approach to crossing symmetric CFT correlators. Part II. General spacetime dimension, JHEP10 (2019) 183 [arXiv:1908.04572] [INSPIRE]. · Zbl 1427.81135
[37] Bautista, T.; Godazgar, H., Lorentzian CFT 3-point functions in momentum space, JHEP, 01, 142 (2020) · Zbl 1434.81094 · doi:10.1007/JHEP01(2020)142
[38] Gillioz, M., Conformal 3-point functions and the Lorentzian OPE in momentum space, Commun. Math. Phys., 379, 227 (2020) · Zbl 1470.81053 · doi:10.1007/s00220-020-03836-8
[39] Gillioz, M.; Lu, X.; Luty, MA; Mikaberidze, G., Convergent Momentum-Space OPE and Bootstrap Equations in Conformal Field Theory, JHEP, 03, 102 (2020) · Zbl 1435.81073 · doi:10.1007/JHEP03(2020)102
[40] Gillioz, M.; Meineri, M.; Penedones, J., A scattering amplitude in Conformal Field Theory, JHEP, 11, 139 (2020) · Zbl 1456.81378 · doi:10.1007/JHEP11(2020)139
[41] Jain, S.; John, RR; Mehta, A.; Nizami, AA; Suresh, A., Higher spin 3-point functions in 3d CFT using spinor-helicity variables, JHEP, 09, 041 (2021) · Zbl 1472.81150 · doi:10.1007/JHEP09(2021)041
[42] Chen, X.; Wang, Y., Quasi-Single Field Inflation and Non-Gaussianities, JCAP, 04, 027 (2010) · doi:10.1088/1475-7516/2010/04/027
[43] D. Baumann and D. Green, Signatures of Supersymmetry from the Early Universe, Phys. Rev. D85 (2012) 103520 [arXiv:1109.0292] [INSPIRE].
[44] Assassi, V.; Baumann, D.; Green, D., On Soft Limits of Inflationary Correlation Functions, JCAP, 11, 047 (2012) · doi:10.1088/1475-7516/2012/11/047
[45] Chen, X.; Wang, Y., Quasi-Single Field Inflation with Large Mass, JCAP, 09, 021 (2012) · doi:10.1088/1475-7516/2012/09/021
[46] Pi, S.; Sasaki, M., Curvature Perturbation Spectrum in Two-field Inflation with a Turning Trajectory, JCAP, 10, 051 (2012) · doi:10.1088/1475-7516/2012/10/051
[47] Noumi, T.; Yamaguchi, M.; Yokoyama, D., Effective field theory approach to quasi-single field inflation and effects of heavy fields, JHEP, 06, 051 (2013) · Zbl 1342.83110 · doi:10.1007/JHEP06(2013)051
[48] Baumann, D.; Ferraro, S.; Green, D.; Smith, KM, Stochastic Bias from Non-Gaussian Initial Conditions, JCAP, 05, 001 (2013)
[49] Assassi, V.; Baumann, D.; Green, D.; McAllister, L., Planck-Suppressed Operators, JCAP, 01, 033 (2014) · doi:10.1088/1475-7516/2014/01/033
[50] Gong, J-O; Pi, S.; Sasaki, M., Equilateral non-Gaussianity from heavy fields, JCAP, 11, 043 (2013) · doi:10.1088/1475-7516/2013/11/043
[51] N. Arkani-Hamed and J. Maldacena, Cosmological Collider Physics, arXiv:1503.08043 [INSPIRE].
[52] Lee, H.; Baumann, D.; Pimentel, GL, Non-Gaussianity as a Particle Detector, JHEP, 12, 040 (2016) · Zbl 1390.83465 · doi:10.1007/JHEP12(2016)040
[53] Kehagias, A.; Riotto, A., On the Inflationary Perturbations of Massive Higher-Spin Fields, JCAP, 07, 046 (2017) · Zbl 1515.83378 · doi:10.1088/1475-7516/2017/07/046
[54] Kumar, S.; Sundrum, R., Heavy-Lifting of Gauge Theories By Cosmic Inflation, JHEP, 05, 011 (2018) · Zbl 1391.85005 · doi:10.1007/JHEP05(2018)011
[55] An, H.; McAneny, M.; Ridgway, AK; Wise, MB, Quasi Single Field Inflation in the non-perturbative regime, JHEP, 06, 105 (2018) · doi:10.1007/JHEP06(2018)105
[56] H. An, M. McAneny, A.K. Ridgway and M.B. Wise, Non-Gaussian Enhancements of Galactic Halo Correlations in Quasi-Single Field Inflation, Phys. Rev. D97 (2018) 123528 [arXiv:1711.02667] [INSPIRE].
[57] Baumann, D.; Goon, G.; Lee, H.; Pimentel, GL, Partially Massless Fields During Inflation, JHEP, 04, 140 (2018) · Zbl 1390.83435 · doi:10.1007/JHEP04(2018)140
[58] Kumar, S.; Sundrum, R., Seeing Higher-Dimensional Grand Unification In Primordial Non-Gaussianities, JHEP, 04, 120 (2019) · doi:10.1007/JHEP04(2019)120
[59] Goon, G.; Hinterbichler, K.; Joyce, A.; Trodden, M., Shapes of gravity: Tensor non-Gaussianity and massive spin-2 fields, JHEP, 10, 182 (2019) · Zbl 1427.83066 · doi:10.1007/JHEP10(2019)182
[60] Anninos, D.; De Luca, V.; Franciolini, G.; Kehagias, A.; Riotto, A., Cosmological Shapes of Higher-Spin Gravity, JCAP, 04, 045 (2019) · Zbl 1542.83002 · doi:10.1088/1475-7516/2019/04/045
[61] Kim, S.; Noumi, T.; Takeuchi, K.; Zhou, S., Heavy Spinning Particles from Signs of Primordial Non-Gaussianities: Beyond the Positivity Bounds, JHEP, 12, 107 (2019) · doi:10.1007/JHEP12(2019)107
[62] Alexander, S.; Gates, SJ; Jenks, L.; Koutrolikos, K.; McDonough, E., Higher Spin Supersymmetry at the Cosmological Collider: Sculpting SUSY Rilles in the CMB, JHEP, 10, 156 (2019) · doi:10.1007/JHEP10(2019)156
[63] A. Hook, J. Huang and D. Racco, Searches for other vacua. Part II. A new Higgstory at the cosmological collider, JHEP01 (2020) 105 [arXiv:1907.10624] [INSPIRE].
[64] Kumar, S.; Sundrum, R., Cosmological Collider Physics and the Curvaton, JHEP, 04, 077 (2020) · doi:10.1007/JHEP04(2020)077
[65] Liu, T.; Tong, X.; Wang, Y.; Xianyu, Z-Z, Probing P and CP-violations on the Cosmological Collider, JHEP, 04, 189 (2020) · doi:10.1007/JHEP04(2020)189
[66] Wang, L-T; Xianyu, Z-Z, In Search of Large Signals at the Cosmological Collider, JHEP, 02, 044 (2020) · doi:10.1007/JHEP02(2020)044
[67] X. Chen, G.A. Palma, W. Riquelme, B. Scheihing Hitschfeld and S. Sypsas, Landscape tomography through primordial non-Gaussianity, Phys. Rev. D98 (2018) 083528 [arXiv:1804.07315] [INSPIRE].
[68] X. Chen, G.A. Palma, B. Scheihing Hitschfeld and S. Sypsas, Reconstructing the Inflationary Landscape with Cosmological Data, Phys. Rev. Lett.121 (2018) 161302 [arXiv:1806.05202] [INSPIRE].
[69] Maldacena, JM; Pimentel, GL, On graviton non-Gaussianities during inflation, JHEP, 09, 045 (2011) · Zbl 1301.81147 · doi:10.1007/JHEP09(2011)045
[70] S. Raju, New Recursion Relations and a Flat Space Limit for AdS/CFT Correlators, Phys. Rev. D85 (2012) 126009 [arXiv:1201.6449] [INSPIRE].
[71] Meltzer, D.; Sivaramakrishnan, A., CFT unitarity and the AdS Cutkosky rules, JHEP, 11, 073 (2020) · Zbl 1456.81390 · doi:10.1007/JHEP11(2020)073
[72] Céspedes, S.; Davis, A-C; Melville, S., On the time evolution of cosmological correlators, JHEP, 02, 012 (2021) · Zbl 1460.83028 · doi:10.1007/JHEP02(2021)012
[73] Melville, S.; Pajer, E., Cosmological Cutting Rules, JHEP, 05, 249 (2021) · doi:10.1007/JHEP05(2021)249
[74] H. Goodhew, S. Jazayeri, M.H. Gordon Lee and E. Pajer, Cutting cosmological correlators, JCAP08 (2021) 003 [arXiv:2104.06587] [INSPIRE]. · Zbl 1492.83096
[75] Jazayeri, S.; Pajer, E.; Stefanyszyn, D., From locality and unitarity to cosmological correlators, JHEP, 10, 065 (2021) · Zbl 1476.83047 · doi:10.1007/JHEP10(2021)065
[76] R. Britto, F. Cachazo, B. Feng and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett.94 (2005) 181602 [hep-th/0501052] [INSPIRE].
[77] Grall, T.; Jazayeri, S.; Stefanyszyn, D., The cosmological phonon: symmetries and amplitudes on sub-horizon scales, JHEP, 11, 097 (2020) · doi:10.1007/JHEP11(2020)097
[78] Pajer, E.; Stefanyszyn, D.; Supeł, J., The Boostless Bootstrap: Amplitudes without Lorentz boosts, JHEP, 12, 198 (2020) · Zbl 1457.83004 · doi:10.1007/JHEP12(2020)198
[79] Stefanyszyn, D.; Supeł, J., The Boostless Bootstrap and BCFW Momentum Shifts, JHEP, 03, 091 (2021) · doi:10.1007/JHEP03(2021)091
[80] Pajer, E., Building a Boostless Bootstrap for the Bispectrum, JCAP, 01, 023 (2021) · Zbl 1484.83018 · doi:10.1088/1475-7516/2021/01/023
[81] Cheung, C.; Creminelli, P.; Fitzpatrick, AL; Kaplan, J.; Senatore, L., The Effective Field Theory of Inflation, JHEP, 03, 014 (2008) · doi:10.1088/1126-6708/2008/03/014
[82] Creminelli, P.; Luty, MA; Nicolis, A.; Senatore, L., Starting the Universe: Stable Violation of the Null Energy Condition and Non-standard Cosmologies, JHEP, 12, 080 (2006) · Zbl 1226.83089 · doi:10.1088/1126-6708/2006/12/080
[83] Anninos, D.; Anous, T.; Freedman, DZ; Konstantinidis, G., Late-time Structure of the Bunch-Davies de Sitter Wavefunction, JCAP, 11, 048 (2015) · doi:10.1088/1475-7516/2015/11/048
[84] J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP05 (2003) 013 [astro-ph/0210603] [INSPIRE].
[85] D. Green and R.A. Porto, Signals of a Quantum Universe, Phys. Rev. Lett.124 (2020) 251302 [arXiv:2001.09149] [INSPIRE].
[86] R.E. Cutkosky, Singularities and discontinuities of Feynman amplitudes, J. Math. Phys.1 (1960) 429 [INSPIRE]. · Zbl 0122.22605
[87] G. ’t Hooft and M.J.G. Veltman, Diagrammar, NATO Sci. Ser. B4 (1974) 177 [INSPIRE].
[88] G. Sterman, An Introduction to Quantum Field Theory, Cambridge University Press, Cambridge, U.K. (1993) [DOI].
[89] M. Veltman, Diagrammatica: The Path to Feynman Rules, Cambridge University Press, Cambridge, U.K. (1993) [DOI].
[90] Meltzer, D., The inflationary wavefunction from analyticity and factorization, JCAP, 12, 018 (2021) · Zbl 1487.83131 · doi:10.1088/1475-7516/2021/12/018
[91] S. Raju, Recursion Relations for AdS/CFT Correlators, Phys. Rev. D83 (2011) 126002 [arXiv:1102.4724] [INSPIRE].
[92] Joung, E.; Mkrtchyan, K., A note on higher-derivative actions for free higher-spin fields, JHEP, 11, 153 (2012) · Zbl 1397.81120 · doi:10.1007/JHEP11(2012)153
[93] Henneaux, M.; Hörtner, S.; Leonard, A., Higher Spin Conformal Geometry in Three Dimensions and Prepotentials for Higher Spin Gauge Fields, JHEP, 01, 073 (2016) · Zbl 1388.83589 · doi:10.1007/JHEP01(2016)073
[94] Hinterbichler, K.; Joyce, A., Manifest Duality for Partially Massless Higher Spins, JHEP, 09, 141 (2016) · Zbl 1390.83285 · doi:10.1007/JHEP09(2016)141
[95] Farrow, JA; Lipstein, AE; McFadden, P., Double copy structure of CFT correlators, JHEP, 02, 130 (2019) · Zbl 1411.81176 · doi:10.1007/JHEP02(2019)130
[96] Jain, S.; John, RR; Mehta, A.; Nizami, AA; Suresh, A., Double copy structure of parity-violating CFT correlators, JHEP, 07, 033 (2021) · Zbl 1468.81095 · doi:10.1007/JHEP07(2021)033
[97] Cabass, G.; Pajer, E.; Stefanyszyn, D.; Supeł, J., Bootstrapping large graviton non-Gaussianities, JHEP, 05, 077 (2022) · Zbl 1522.83412 · doi:10.1007/JHEP05(2022)077
[98] Witten, E., Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys., 252, 189 (2004) · Zbl 1105.81061 · doi:10.1007/s00220-004-1187-3
[99] Mata, I.; Raju, S.; Trivedi, S., CMB from CFT, JHEP, 07, 015 (2013) · Zbl 1342.83403 · doi:10.1007/JHEP07(2013)015
[100] Green, D.; Pajer, E., On the Symmetries of Cosmological Perturbations, JCAP, 09, 032 (2020) · Zbl 1493.83031 · doi:10.1088/1475-7516/2020/09/032
[101] P. Creminelli, On non-Gaussianities in single-field inflation, JCAP10 (2003) 003 [astro-ph/0306122] [INSPIRE].
[102] M. Alishahiha, E. Silverstein and D. Tong, DBI in the sky, Phys. Rev. D70 (2004) 123505 [hep-th/0404084] [INSPIRE].
[103] X. Chen, M.-x. Huang, S. Kachru and G. Shiu, Observational signatures and non-Gaussianities of general single field inflation, JCAP01 (2007) 002 [hep-th/0605045] [INSPIRE].
[104] Chu, SK; Lee, MHG; Lu, S.; Tong, X.; Wang, Y.; Zhou, S., Connections between Minkowski and Cosmological Correlation Functions, JCAP, 06, 001 (2018) · Zbl 1527.83116
[105] Chu, SK; Wang, Y.; Zhou, S., Operator method and recursion relations for inflationary correlators, JCAP, 03, 042 (2019) · Zbl 1541.83128 · doi:10.1088/1475-7516/2019/03/042
[106] D. Baumann et al., work in progress.
[107] Bern, Z.; Grant, AK, Perturbative gravity from QCD amplitudes, Phys. Lett. B, 457, 23 (1999) · doi:10.1016/S0370-2693(99)00524-9
[108] B.R. Holstein, Graviton Physics, Am. J. Phys.74 (2006) 1002 [gr-qc/0607045] [INSPIRE].
[109] Hinterbichler, K.; Hui, L.; Khoury, J., An Infinite Set of Ward Identities for Adiabatic Modes in Cosmology, JCAP, 01, 039 (2014) · doi:10.1088/1475-7516/2014/01/039
[110] Costa, MS; Penedones, J.; Poland, D.; Rychkov, S., Spinning Conformal Blocks, JHEP, 11, 154 (2011) · Zbl 1306.81148 · doi:10.1007/JHEP11(2011)154
[111] Karateev, D.; Kravchuk, P.; Simmons-Duffin, D., Weight Shifting Operators and Conformal Blocks, JHEP, 02, 081 (2018) · Zbl 1387.81323 · doi:10.1007/JHEP02(2018)081
[112] Alday, LF; Behan, C.; Ferrero, P.; Zhou, X., Gluon Scattering in AdS from CFT, JHEP, 06, 020 (2021) · doi:10.1007/JHEP06(2021)020
[113] H. Kawai, D.C. Lewellen and S.H.H. Tye, A Relation Between Tree Amplitudes of Closed and Open Strings, Nucl. Phys. B269 (1986) 1 [INSPIRE].
[114] Z. Bern, J.J.M. Carrasco and H. Johansson, New Relations for Gauge-Theory Amplitudes, Phys. Rev. D78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].
[115] Z. Bern, T. Dennen, Y.-t. Huang and M. Kiermaier, Gravity as the Square of Gauge Theory, Phys. Rev. D82 (2010) 065003 [arXiv:1004.0693] [INSPIRE].
[116] Cohen, T.; Green, D., Soft de Sitter Effective Theory, JHEP, 12, 041 (2020) · Zbl 1457.81069 · doi:10.1007/JHEP12(2020)041
[117] S. Albayrak, C. Chowdhury and S. Kharel, On loop celestial amplitudes for gauge theory and gravity, Phys. Rev. D102 (2020) 126020 [arXiv:2007.09338] [INSPIRE].
[118] Bourjaily, JL; Hannesdottir, H.; McLeod, AJ; Schwartz, MD; Vergu, C., Sequential Discontinuities of Feynman Integrals and the Monodromy Group, JHEP, 01, 205 (2021) · Zbl 1459.81045 · doi:10.1007/JHEP01(2021)205
[119] Cheung, C.; Fitzpatrick, AL; Kaplan, J.; Senatore, L., On the consistency relation of the 3-point function in single field inflation, JCAP, 02, 021 (2008) · doi:10.1088/1475-7516/2008/02/021
[120] X. Chen, B. Hu, M.-x. Huang, G. Shiu and Y. Wang, Large Primordial Trispectra in General Single Field Inflation, JCAP08 (2009) 008 [arXiv:0905.3494] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.