×

On the symmetries of cosmological perturbations. (English) Zbl 1493.83031


MSC:

83E05 Geometrodynamics and the holographic principle
83F05 Relativistic cosmology
35B20 Perturbations in context of PDEs
83C40 Gravitational energy and conservation laws; groups of motions
22E70 Applications of Lie groups to the sciences; explicit representations
62H20 Measures of association (correlation, canonical correlation, etc.)
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)

References:

[1] W. Hu, D.N. Spergel and M.J. White, 1997 Distinguishing causal seeds from inflation, https://doi.org/10.1103/PhysRevD.55.3288 Phys. Rev. D55 3288 [astro-ph/9605193] · doi:10.1103/PhysRevD.55.3288
[2] D.N. Spergel and M. Zaldarriaga, 1997 CMB polarization as a direct test of inflation, https://doi.org/10.1103/PhysRevLett.79.2180 Phys. Rev. Lett.79 2180 [astro-ph/9705182] · doi:10.1103/PhysRevLett.79.2180
[3] S. Dodelson, 2003 Coherent phase argument for inflation, https://doi.org/10.1063/1.1627736 AIP Conf. Proc.689184 [hep-ph/0309057] · doi:10.1063/1.1627736
[4] S.R. Coleman and J. Mandula, 1967 All Possible Symmetries of the S Matrix, https://doi.org/10.1103/PhysRev.159.1251 Phys. Rev.1591251 · Zbl 0168.23702 · doi:10.1103/PhysRev.159.1251
[5] B. Finelli, G. Goon, E. Pajer and L. Santoni, 2018 The Effective Theory of Shift-Symmetric Cosmologies J. Cosmol. Astropart. Phys.2018 05 060 [1802.01580] · Zbl 1536.83171
[6] B. Finelli, G. Goon, E. Pajer and L. Santoni, 2018 Soft Theorems For Shift-Symmetric Cosmologies, https://doi.org/10.1103/PhysRevD.97.063531 Phys. Rev. D97 063531 [1711.03737] · doi:10.1103/PhysRevD.97.063531
[7] D. Baumann and D. Green, 2011 Equilateral Non-Gaussianity and New Physics on the Horizon J. Cosmol. Astropart. Phys.2011 09 014 [1102.5343]
[8] D. Baumann, D. Green and T. Hartman, 2019 Dynamical Constraints on RG Flows and Cosmology J. High Energy Phys. JHEP12(2019)134 [1906.10226] · Zbl 1431.85006
[9] A. Nicolis, R. Rattazzi and E. Trincherini, 2009 The Galileon as a local modification of gravity, https://doi.org/10.1103/PhysRevD.79.064036 Phys. Rev. D79 064036 [0811.2197] · doi:10.1103/PhysRevD.79.064036
[10] C. Burrage, C. de Rham, D. Seery and A.J. Tolley, 2011 Galileon inflation J. Cosmol. Astropart. Phys.2011 01 014 [1009.2497]
[11] P. Creminelli, G. D’Amico, M. Musso, J. Norena and E. Trincherini, 2011 Galilean symmetry in the effective theory of inflation: new shapes of non-Gaussianity J. Cosmol. Astropart. Phys.2011 02 006 [1011.3004]
[12] C. Deffayet, G. Esposito-Farese and A. Vikman, 2009 Covariant Galileon, https://doi.org/10.1103/PhysRevD.79.084003 Phys. Rev. D79 084003 [0901.1314] · doi:10.1103/PhysRevD.79.084003
[13] P. Creminelli, J. Noreña and M. Simonović, 2012 Conformal consistency relations for single-field inflation J. Cosmol. Astropart. Phys.2012 07 052 [1203.4595]
[14] J.M. Maldacena, 2003 Non-Gaussian features of primordial fluctuations in single field inflationary models J. High Energy Phys. JHEP05(2003)013 [astro-ph/0210603]
[15] P. Creminelli and M. Zaldarriaga, 2004 Single field consistency relation for the 3-point function J. Cosmol. Astropart. Phys.2004 10 006 [astro-ph/0407059]
[16] K. Hinterbichler, L. Hui and J. Khoury, 2012 Conformal Symmetries of Adiabatic Modes in Cosmology J. Cosmol. Astropart. Phys.2012 08 017 [1203.6351]
[17] V. Assassi, D. Baumann and D. Green, 2012 On Soft Limits of Inflationary Correlation Functions J. Cosmol. Astropart. Phys.2012 11 047 [1204.4207]
[18] K. Hinterbichler, L. Hui and J. Khoury, 2014 An Infinite Set of Ward Identities for Adiabatic Modes in Cosmology J. Cosmol. Astropart. Phys.2014 01 039 [1304.5527]
[19] E. Pajer and S. Jazayeri, 2018 Systematics of Adiabatic Modes: Flat Universes J. Cosmol. Astropart. Phys.2018 03 013 [1710.02177] · Zbl 1530.83054
[20] L. Hui, A. Joyce and S.S.C. Wong, 2019 Inflationary soft theorems revisited: A generalized consistency relation J. Cosmol. Astropart. Phys.2019 02 060 [1811.05951] · Zbl 1541.83162
[21] S. Weinberg, 2003 Adiabatic modes in cosmology, https://doi.org/10.1103/PhysRevD.67.123504 Phys. Rev. D67 123504 [astro-ph/0302326] · doi:10.1103/PhysRevD.67.123504
[22] S. Endlich, A. Nicolis and J. Wang, 2013 Solid Inflation J. Cosmol. Astropart. Phys.2013 10 011 [1210.0569]
[23] S. Endlich, B. Horn, A. Nicolis and J. Wang, 2014 Squeezed limit of the solid inflation three-point function, https://doi.org/10.1103/PhysRevD.90.063506 Phys. Rev. D90 063506 [1307.8114] · doi:10.1103/PhysRevD.90.063506
[24] L. Bordin, P. Creminelli, M. Mirbabayi and J. Noreña, 2017 Solid Consistency J. Cosmol. Astropart. Phys.2017 03 004 [1701.04382] · Zbl 1515.83309
[25] S. Jazayeri, E. Pajer and D. van der Woude, 2019 Solid Soft Theorems J. Cosmol. Astropart. Phys.2019 06 011 [1902.09020] · Zbl 1481.83111
[26] E. Pajer and D. Stefanyszyn, 2019 Symmetric Superfluids J. High Energy Phys. JHEP06(2019)008 [1812.05133] · Zbl 1445.81051
[27] T. Grall, S. Jazayeri and E. Pajer, 2020 Symmetric Scalars J. Cosmol. Astropart. Phys.2020 05 031 [1909.04622] · Zbl 1491.83021
[28] J. Maldacena and A. Zhiboedov, 2013 Constraining Conformal Field Theories with A Higher Spin Symmetry, https://doi.org/10.1088/1751-8113/46/21/214011 J. Phys. A46 214011 [1112.1016] · Zbl 1339.81089 · doi:10.1088/1751-8113/46/21/214011
[29] I. Mata, S. Raju and S. Trivedi, 2013 CMB from CFT J. High Energy Phys. JHEP07(2013)015 [1211.5482] · Zbl 1342.83403
[30] N. Arkani-Hamed, D. Baumann, H. Lee and G.L. Pimentel, 2020 The Cosmological Bootstrap: Inflationary Correlators from Symmetries and Singularities J. High Energy Phys. JHEP04(2020)105 [1811.00024] · Zbl 1436.85001
[31] D. Baumann, C. Duaso Pueyo, A. Joyce, H. Lee and G.L. Pimentel, The Cosmological Bootstrap: Weight-Shifting Operators and Scalar Seeds, [1910.14051]
[32] C. Sleight, 2020 A Mellin Space Approach to Cosmological Correlators J. High Energy Phys. JHEP01(2020)090 [1906.12302] · Zbl 1434.81117
[33] C. Sleight and M. Taronna, 2020 Bootstrapping Inflationary Correlators in Mellin Space J. High Energy Phys. JHEP02(2020)098 [1907.01143] · Zbl 1435.81174
[34] A. Joyce, A. Nicolis and G. Sun, Deviations from scale invariance, from scale invariance, in preparation
[35] A. Nicolis, Deviations from scale invariance, from scale invariance, talk at The 24th Rencontres Itzykson, IPhT CEA-Saclay, 5-7 June 2019 [https://indico.in2p3.fr/event/18200/timetable/]
[36] L. Bordin, G. Cabass, P. Creminelli and F. Vernizzi, 2017 Simplifying the EFT of Inflation: generalized disformal transformations and redundant couplings J. Cosmol. Astropart. Phys.2017 09 043 [1706.03758] · Zbl 1515.83308
[37] L. Bordin and G. Cabass, 2020 Graviton non-Gaussianities and Parity Violation in the EFT of Inflation J. Cosmol. Astropart. Phys.2020 07 014 [2004.00619] · Zbl 1492.83080
[38] E. Pajer, G.L. Pimentel and J.V.S. Van Wijck, 2017 The Conformal Limit of Inflation in the Era of CMB Polarimetry J. Cosmol. Astropart. Phys.2017 06 009 [1609.06993] · Zbl 1515.83421
[39] M.H. Namjoo, H. Firouzjahi and M. Sasaki, 2013 Violation of non-Gaussianity consistency relation in a single field inflationary model, https://doi.org/10.1209/0295-5075/101/39001 EPL101 39001 [1210.3692] · doi:10.1209/0295-5075/101/39001
[40] P. Creminelli, 2012 Conformal invariance of scalar perturbations in inflation, https://doi.org/10.1103/PhysRevD.85.041302 Phys. Rev. D85 041302 [1108.0874] · doi:10.1103/PhysRevD.85.041302
[41] M.S. Costa, J. Penedones, D. Poland and S. Rychkov, 2011 Spinning Conformal Correlators J. High Energy Phys. JHEP11(2011)071 [1107.3554] · Zbl 1306.81207
[42] D. Simmons-Duffin, 2017 The Conformal Bootstrap, in Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings, pp. 1-74 [https://doi.org/10.1142/9789813149441\0001DOI] [1602.07982] · Zbl 1359.81165
[43] J.M. Maldacena and G.L. Pimentel, 2011 On graviton non-Gaussianities during inflation J. High Energy Phys. JHEP09(2011)045 [1104.2846] · Zbl 1301.81147
[44] G. Cabass, E. Pajer and F. Schmidt, 2017 How Gaussian can our Universe be? J. Cosmol. Astropart. Phys.2017 01 003 [1612.00033] · Zbl 1515.83316
[45] A. Ghosh, N. Kundu, S. Raju and S.P. Trivedi, 2014 Conformal Invariance and the Four Point Scalar Correlator in Slow-Roll Inflation J. High Energy Phys. JHEP07(2014)011 [1401.1426]
[46] E. Witten, 2001 Quantum gravity in de Sitter space, in Strings 2001: International Conference, [hep-th/0106109]
[47] A. Strominger, 2001 The dS/CFT correspondence J. High Energy Phys. JHEP10(2001)034 [hep-th/0106113]
[48] P.O. Mazur and E. Mottola, 2001 Weyl cohomology and the effective action for conformal anomalies, https://doi.org/10.1103/PhysRevD.64.104022 Phys. Rev. D64 104022 [hep-th/0106151] · doi:10.1103/PhysRevD.64.104022
[49] M. Henningson and K. Skenderis, 1998 The Holographic Weyl anomaly J. High Energy Phys. JHEP07(1998)023 [hep-th/9806087] · Zbl 0958.81083
[50] M. Bianchi, D.Z. Freedman and K. Skenderis, 2001 How to go with an RG flow J. High Energy Phys. JHEP08(2001)041 [hep-th/0105276]
[51] M. Bianchi, D.Z. Freedman and K. Skenderis, 2002 Holographic renormalization, https://doi.org/10.1016/S0550-3213(02)00179-7 Nucl. Phys. B631 159 [hep-th/0112119] · Zbl 0995.81075 · doi:10.1016/S0550-3213(02)00179-7
[52] A. Strominger, 2001 Inflation and the dS/CFT correspondence J. High Energy Phys. JHEP11(2001)049 [hep-th/0110087]
[53] P. McFadden and K. Skenderis, 2010 Holography for Cosmology, https://doi.org/10.1103/PhysRevD.81.021301 Phys. Rev. D81 021301 [0907.5542] · doi:10.1103/PhysRevD.81.021301
[54] M.A. Luty, J. Polchinski and R. Rattazzi, 2013 The a-theorem and the Asymptotics of 4 D Quantum Field Theory J. High Energy Phys. JHEP01(2013)152 [1204.5221] · Zbl 1342.81347
[55] D. Harlow and H. Ooguri, Symmetries in quantum field theory and quantum gravity, [1810.05338] · Zbl 1472.81208
[56] R. Haag, J.T. Lopuszanski and M. Sohnius, 1975 All Possible Generators of Supersymmetries of the s Matrix, https://doi.org/10.1016/0550-3213(75)90279-5 Nucl. Phys. B88 257 · doi:10.1016/0550-3213(75)90279-5
[57] H. Bacry and J. Levy-Leblond, 1968 Possible kinematics, https://doi.org/10.1063/1.1664490 J. Math. Phys.91605 · Zbl 0162.58606 · doi:10.1063/1.1664490
[58] N. Arkani-Hamed and J. Maldacena, Cosmological Collider Physics, [1503.08043]
[59] N. Arkani-Hamed and P. Benincasa, On the Emergence of Lorentz Invariance and Unitarity from the Scattering Facet of Cosmological Polytopes, [1811.01125]
[60] P. Benincasa, From the flat-space S-matrix to the Wavefunction of the Universe, [1811.02515]
[61] P. Benincasa, Cosmological Polytopes and the Wavefuncton of the Universe for Light States, [1909.02517]
[62] A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, 2006 Causality, analyticity and an IR obstruction to UV completion J. High Energy Phys. JHEP10(2006)014 [hep-th/0602178]
[63] X.O. Camanho, J.D. Edelstein, J. Maldacena and A. Zhiboedov, 2016 Causality Constraints on Corrections to the Graviton Three-Point Coupling J. High Energy Phys. JHEP02(2016)020 [1407.5597] · Zbl 1388.83093
[64] T. Hartman, S. Jain and S. Kundu, 2016 Causality Constraints in Conformal Field Theory J. High Energy Phys. JHEP05(2016)099 [1509.00014]
[65] N. Afkhami-Jeddi, T. Hartman, S. Kundu and A. Tajdini, 2017 Einstein gravity 3-point functions from conformal field theory J. High Energy Phys. JHEP12(2017)049 [1610.09378] · Zbl 1383.83024
[66] C. Cordova, J. Maldacena and G.J. Turiaci, 2017 Bounds on OPE Coefficients from Interference Effects in the Conformal Collider J. High Energy Phys. JHEP11(2017)032 [1710.03199] · Zbl 1383.81196
[67] D. Baumann, D. Green, H. Lee and R.A. Porto, 2016 Signs of Analyticity in Single-Field Inflation, https://doi.org/10.1103/PhysRevD.93.023523 Phys. Rev. D93 023523 [1502.07304] · doi:10.1103/PhysRevD.93.023523
[68] E. Pajer, D. Stefanyszyn and J. Supel, The Boostless Bootstrap, to appear · Zbl 1457.83004
[69] T. Grall and S. Melville, Inflation in Motion: Unitarity Constraints in Effective Field Theories with Broken Lorentz Symmetry, to appear · Zbl 1493.83030
[70] S. Raju, 2012 New Recursion Relations and a Flat Space Limit for AdS/CFT Correlators, https://doi.org/10.1103/PhysRevD.85.126009 Phys. Rev. D85 126009 [1201.6449] · doi:10.1103/PhysRevD.85.126009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.