×

Adaptive isogeometric analysis for transient dynamics: space-time refinement based on hierarchical a-posteriori error estimations. (English) Zbl 1507.74524

Summary: In this paper, based on our proposed IsoGeometric Analysis (IGA)-based adaptivity technique for plate vibration [P. Yu et al., Comput. Methods Appl. Mech. Eng. 342, 251–286 (2018; Zbl 1440.74164)] the space-time adaptivity strategies used for transient dynamics are established. Specifically, the Geometry Independent Field approximaTion (GIFT) method is applied to discretize the spatial domain, and time discretization is proceeded by Newmark method. In the framework of GIFT/Newmark, three kinds of space-time adaptivity strategies based on hierarchical a-posteriori error estimations are developed successively, that is, Unidirectional Multi-level Space-Time Adaptive GIFT/Newmark (UM-STAGN), Energy-based Space-Time Adaptive GIFT/Newmark (E-STAGN), and Goal-oriented Space-Time Adaptive GIFT/ Newmark (G-STAGN) methods respectively. The main concept of UM-STAGN approach is to get rid of the elements where the error estimators reach the prescribed accuracy at each adaptation step, and then assemble the rest elements as the new subsystems to be solved at the next stage. By reducing the scale of the computational domains gradually, this method achieves efficiency to some degree, though, since it fails to transfer the error information across subsystems, the error of Quantity of Interest (QoI) cannot arrive at an expected precision. For this reason, we introduce E-STAGN methodology, wherein the error indicator of each element is reassessed at every adaptive cycle through solving the whole system again. In this case, the QoI error is able to be convergent to an acceptable accuracy. Nevertheless, as the error is accumulated with time in the time-domain problem, E-STAGN method based on the energy-norm error estimation is unable to expose the source of the error so that it fails to offer an efficient refinement. This is the motivation to establish the G-STAGN technique, where the error estimation drives from our proposed first-order Dual Weight Residual (DWR) method. G-STAGN strategy can detect the origin of QoI error, and hence it leads to a remarkably economical refinement. Numerical examples are carried out in both single-patch and multi-patch structures. It is demonstrated that both UM-STAGN and E-STAGN methods can catch the propagation of stress wave for the primal problem, while G-STAGN technique is capable to track the travel path of dual stress. Therefore, the G-STAGN strategy achieves an optimal convergent rate, compared to that obtained by UM-STAGN, E-STAGN and uniform space-time \(h\)-refinement approaches.

MSC:

74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74H45 Vibrations in dynamical problems in solid mechanics
74S22 Isogeometric methods applied to problems in solid mechanics

Citations:

Zbl 1440.74164

Software:

ISOGAT
Full Text: DOI

References:

[1] Bales, L.; Lasiecka, I., Continuous finite elements in space and time for the nonhomogeneous wave equation, Comput. Math. Appl., 27, 3, 91-102 (1994) · Zbl 0792.65074
[2] French, D.; Peterson, T., A continuous space-time finite element method for the wave equation, Math. Comput. Am. Math. Soc., 65, 214, 491-506 (1996) · Zbl 0846.65048
[3] Grote, M. J.; Schneebeli, A.; Schötzau, D., Discontinuous Galerkin finite element method for the wave equation, SIAM J. Numer. Anal., 44, 6, 2408-2431 (2006) · Zbl 1129.65065
[4] Johnson, C., Discontinuous Galerkin finite element methods for second order hyperbolic problems, Comput. Methods Appl. Mech. Engrg., 107, 1-2, 117-129 (1993) · Zbl 0787.65070
[5] Hughes, T. J., The Finite Element Method: Linear Static and Dynamic Finite Element Analysis (2012), Courier Corporation
[6] Zienkiewicz, O.; Wood, W.; Hine, N.; Taylor, R., A unified set of single step algorithms. Part 1: General formulation and applications, Internat. J. Numer. Methods Engrg., 20, 8, 1529-1552 (1984) · Zbl 0557.65041
[7] Wood, W., Practical Time-Stepping Schemes (1990), Oxford University Press: Oxford University Press USA · Zbl 0694.65043
[8] Atkinson, K. E., An Introduction to Numerical Analysis (2008), John Wiley & Sons
[9] Butcher, J. C., Numerical Methods for Ordinary Differential Equations (2016), John Wiley & Sons · Zbl 1354.65004
[10] Cebeci, T., Convective Heat Transfer (2002), Springer · Zbl 1057.76001
[11] Izadpanah, E.; Shojaee, S.; Hamzehei-Javaran, S., Weight-adaptive isogeometric analysis for solving elastodynamic problems based on space-time discretization approach, Internat. J. Numer. Methods Engrg., 119, 10, 1018-1035 (2019) · Zbl 07863653
[12] Langer, U.; Moore, S. E.; Neumüller, M., Space-time isogeometric analysis of parabolic evolution problems, Comput. Methods Appl. Mech. Engrg., 306, 342-363 (2016) · Zbl 1436.76027
[13] Gao, H.; Ju, L.; Li, X.; Duddu, R., A space-time adaptive finite element method with exponential time integrator for the phase field model of pitting corrosion, J. Comput. Phys., 406, Article 109191 pp. (2020) · Zbl 1453.65317
[14] Gander, M. J., 50 years of time parallel time integration, (Multiple Shooting and Time Domain Decomposition Methods (2015), Springer), 69-113 · Zbl 1337.65127
[15] Chan, J.; Evans, J. A., Multi-patch discontinuous Galerkin isogeometric analysis for wave propagation: Explicit time-stepping and efficient mass matrix inversion, Comput. Methods Appl. Mech. Engrg., 333, 22-54 (2018) · Zbl 1440.74381
[16] Łoś, M.; Behnoudfar, P.; Paszyński, M.; Calo, V. M., Fast isogeometric solvers for hyperbolic wave propagation problems, Comput. Math. Appl., 80, 1, 109-120 (2020) · Zbl 1446.65072
[17] Auricchio, F.; Da Veiga, L. B.; Hughes, T. J.; Reali, A.; Sangalli, G., Isogeometric collocation for elastostatics and explicit dynamics, Comput. Methods Appl. Mech. Engrg., 249, 2-14 (2012) · Zbl 1348.74305
[18] Marino, E.; Kiendl, J.; De Lorenzis, L., Isogeometric collocation for implicit dynamics of three-dimensional beams undergoing finite motions, Comput. Methods Appl. Mech. Engrg., 356, 548-570 (2019) · Zbl 1441.74088
[19] Wen, W.; Duan, S.; Wei, K.; Ma, Y.; Fang, D., A quadratic b-spline based isogeometric analysis of transient wave propagation problems with implicit time integration method, Appl. Math. Model., 59, 115-131 (2018) · Zbl 1480.74155
[20] Yavari, A.; Abolbashari, M. H., Elastic wave propagation in non-uniform rational B-spline rods under mechanical impact loading using an isogeometrical approach, Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. (2018)
[21] Kelly, D.; De S. R. Gago, J.; Zienkiewicz, O.; Babuska, I., A posteriori error analysis and adaptive processes in the finite element method: Part I-error analysis, Internat. J. Numer. Methods Engrg., 19, 11, 1593-1619 (1983) · Zbl 0534.65068
[22] De S. R. Gago, J.; Kelly, D.; Zienkiewicz, O.; Babuska, I., A posteriori error analysis and adaptive processes in the finite element method: Part II—Adaptive mesh refinement, Internat. J. Numer. Methods Engrg., 19, 11, 1621-1656 (1983) · Zbl 0534.65069
[23] Langer, U.; Matculevich, S.; Repin, S., A posteriori error estimates for space-time IgA approximations to parabolic initial boundary value problems (2016), arXiv preprint arXiv:1612.08998
[24] Langer, U.; Matculevich, S.; Repin, S., Guaranteed error control bounds for the stabilised space-time IgA approximations to parabolic problems (2017), arXiv preprint arXiv:1712.06017
[25] Langer, U.; Matculevich, S.; Repin, S., 5. Adaptive Space-time isogeometric analysis for parabolic evolution problems, (Space-Time Methods (2019), De Gruyter), 141-184 · Zbl 1453.65330
[26] Verdugo, F.; Parés, N.; Díez, P., Error assessment in structural transient dynamics, Arch. Comput. Methods Eng., 21, 1, 59-90 (2014) · Zbl 1354.74304
[27] Waeytens, J.; Chamoin, L.; Ladevéze, P., Guaranteed error bounds on pointwise quantities of interest for transient viscodynamics problems, Comput. Mech., 49, 3, 291-307 (2012) · Zbl 1357.74065
[28] Romero, I.; Lacoma, L. M., A methodology for the formulation of error estimators for time integration in linear solid and structural dynamics, Internat. J. Numer. Methods Engrg., 66, 4, 635-660 (2006) · Zbl 1110.74825
[29] Zeng, L. F.; Wiberg, N. E.; Li, X.; Xie, Y., A posteriori local error estimation and adaptive time-stepping for newmark integration in dynamic analysis, Earthq. Eng. Struct. Dyn., 21, 7, 555-571 (1992)
[30] Li, X.; Zeng, L. F.; Wiberg, N. E., A simple local error estimator and an adaptive time-stepping procedure for direct integration method in dynamic analysis, Commun. Numer. Methods. Eng., 9, 4, 273-292 (1993) · Zbl 0777.73079
[31] Cavin, P.; Gravouil, A.; Lubrecht, A.; Combescure, A., Automatic energy conserving space-time refinement for linear dynamic structural problems, Internat. J. Numer. Methods Engrg., 64, 3, 304-321 (2005) · Zbl 1181.74132
[32] Biboulet, N.; Gravouil, A.; Dureisseix, D.; Lubrecht, A.; Combescure, A., An efficient linear elastic FEM solver using automatic local grid refinement and accuracy control, Finite Elem. Anal. Des., 68, 28-38 (2013)
[33] Biotteau, E.; Gravouil, A.; Lubrecht, A.; Combescure, A., Multigrid solver with automatic mesh refinement for transient elastoplastic dynamic problems, Internat. J. Numer. Methods Engrg., 84, 8, 947-971 (2010) · Zbl 1202.74068
[34] Biotteau, E.; Gravouil, A.; Lubrecht, A. A.; Combescure, A., Three dimensional automatic refinement method for transient small strain elastoplastic finite element computations, Comput. Mech., 49, 1, 123-136 (2012) · Zbl 1356.74031
[35] R. Abedi, S.-H. Chung, J. Erickson, Y. Fan, M. Garland, D. Guoy, R. Haber, J.M. Sullivan, S. Thite, Y. Zhou, Spacetime meshing with adaptive refinement and coarsening, in: Proceedings of the Twentieth Annual Symposium on Computational Geometry, 2004, pp. 300-309. · Zbl 1422.65242
[36] Abedi, R.; Haber, R. B.; Thite, S.; Erickson, J., An h-adaptive spacetime-discontinuous Galerkin method for linear elastodynamics, Eur. J. Comput. Mech., 15, 6, 619-642 (2006) · Zbl 1208.74143
[37] Abedi, R.; Petracovici, B.; Haber, R. B., A space-time discontinuous Galerkin method for linearized elastodynamics with element-wise momentum balance, Comput. Methods Appl. Mech. Engrg., 195, 25-28, 3247-3273 (2006) · Zbl 1130.74044
[38] Boucinha, L.; Gravouil, A.; Ammar, A., Space-time proper generalized decompositions for the resolution of transient elastodynamic models, Comput. Methods Appl. Mech. Engrg., 255, 67-88 (2013) · Zbl 1297.74016
[39] Boucinha, L.; Ammar, A.; Gravouil, A.; Nouy, A., Ideal minimal residual-based proper generalized decomposition for non-symmetric multi-field models-application to transient elastodynamics in space-time domain, Comput. Methods Appl. Mech. Engrg., 273, 56-76 (2014) · Zbl 1296.74139
[40] Verdugo, F.; Parés, N.; Díez, P., Modal-based goal-oriented error assessment for timeline-dependent quantities in transient dynamics, Internat. J. Numer. Methods Engrg., 95, 8, 685-720 (2013) · Zbl 1352.74071
[41] Verdugo, F.; Parés, N.; Díez, P., Goal-oriented space-time adaptivity for transient dynamics using a modal description of the adjoint solution, Comput. Mech., 54, 2, 331-352 (2014) · Zbl 1398.74415
[42] Muñoz-Matute, J.; Alberdi, E.; Pardo, D.; Calo, V. M., Time-domain goal-oriented adaptivity using pseudo-dual error representations, Comput. Methods Appl. Mech. Engrg., 325, 395-415 (2017) · Zbl 1439.65118
[43] Bangerth, W.; Geiger, M.; Rannacher, R., Adaptive Galerkin finite element methods for the wave equation, Comput. Methods Appl. Math., 10, 1, 3-48 (2010) · Zbl 1283.35053
[44] Schleupen, A.; Ramm, E., Local and global error estimations in linear structural dynamics, Comput. Struct., 76, 6, 741-756 (2000)
[45] Fuentes, D.; Littlefield, D.; Oden, J. T.; Prudhomme, S., Extensions of goal-oriented error estimation methods to simulations of highly-nonlinear response of shock-loaded elastomer-reinforced structures, Comput. Methods Appl. Mech. Engrg., 195, 37, 4659-4680 (2006) · Zbl 1124.74047
[46] Erhart, T.; Wall, W. A.; Ramm, E., Robust adaptive remeshing strategy for large deformation, transient impact simulations, Internat. J. Numer. Methods Engrg., 65, 13, 2139-2166 (2006) · Zbl 1113.74067
[47] Darrigrand, V.; Pardo, D.; Muga, I., Goal-oriented adaptivity using unconventional error representations for the 1D Helmholtz equation, Comput. Math. Appl., 69, 9, 964-979 (2015) · Zbl 1443.65322
[48] Yu, P.; Anitescu, C.; Tomar, S.; Bordas, S. P.A.; Kerfriden, P., Adaptive isogeometric analysis for plate vibrations: An efficient approach of local refinement based on hierarchical a posteriori error estimation, Comput. Methods Appl. Mech. Engrg., 342, 251-286 (2018) · Zbl 1440.74164
[49] Hulbert, G. M., Computational structural dynamics, Encycl. Comput. Mech. (2004)
[50] Chan, A., Variational methods in elasticity and plasticity. k. Washizu. Pergamon, Oxford, 1968. 350 pp. Illustrated. 120s., Aeronaut. J., 72, 694, 889 (1968) · Zbl 0164.26001
[51] Cannarozzi, M.; Mancuso, M., Formulation and analysis of variational methods for time integration of linear elastodynamics, Comput. Methods Appl. Mech. Engrg., 127, 1-4, 241-257 (1995) · Zbl 0862.73078
[52] Krenk, S., Global format for energy-momentum based time integration in nonlinear dynamics, Internat. J. Numer. Methods Engrg., 100, 6, 458-476 (2014) · Zbl 1352.74133
[53] Wloka, J., Partial Differential Equations (1987), Cambridge University · Zbl 0623.35006
[54] Géradin, M.; Rixen, D. J., Mechanical Vibrations: Theory and Application to Structural Dynamics (2014), John Wiley & Sons
[55] Chemin, A.; Elguedj, T.; Gravouil, A., Isogeometric local h-refinement strategy based on multigrids, Finite Elem. Anal. Des., 100, 77-90 (2015)
[56] Ishikawa, S., Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44, 1, 147-150 (1974) · Zbl 0286.47036
[57] Plank, J. S.; Beck, M.; Kingsley, G.; Li, K., Libckpt: Transparent Checkpointing Under Unix (1994), Computer Science Department
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.