×

A quadratic b-spline based isogeometric analysis of transient wave propagation problems with implicit time integration method. (English) Zbl 1480.74155

Summary: A uniform quadratic b-spline isogeometric element is exclusively considered for wave propagation problem with the use of desirable implicit time integration scheme. A generalized numerical algorithm is proposed for dispersion analysis of one-dimensional (1-D) and two-dimensional (2-D) wave propagation problems where the quantified influence of the defined CFL number on wave velocity error is analyzed and obtained. Meanwhile, the optimal CFL (Courant-Friedrichs-Lewy) number for the proposed 1-D and 2-D problems is suggested. Four representative numerical simulations confirm the effectiveness of the proposed method and the correctness of dispersion analysis when appropriate spatial element size and time increment are adopted. The desirable computation efficiency of the proposed isogeometric method was confirmed by conducting time cost and calculation accuracy analysis of a 2-D numerical example where the referred FEM was also tested for comparison.

MSC:

74J05 Linear waves in solid mechanics
65D07 Numerical computation using splines
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
78A40 Waves and radiation in optics and electromagnetic theory
Full Text: DOI

References:

[1] Tomar, S. K.; Khurana, A., Wave propagation in thermo-chiral elastic medium, Appl. Math. Model., 37, 22, 9409-9418 (2013) · Zbl 1449.74013
[2] Shekhar, S.; Parvez, I. A., Propagation of torsional surface waves in an inhomogeneous anisotropic fluid saturated porous layered half space under initial stress with varying properties, Appl. Math. Model., 40, 2, 1300-1314 (2016) · Zbl 1446.76041
[3] Shen, Y.; Yin, X., Analysis of geometric dispersion effect of impact-induced transient waves in composite rod using dynamic substructure method, Appl. Math. Model., 40, 3, 1972-1988 (2016) · Zbl 1457.74105
[4] Shui, L.; Liu, Y.; Chen, X., Three dimensional wave propagation in time-varying materials: a mathematical model based on the weak solutions of continuity in the moving property interface, Appl. Math. Model., 48, 134-152 (2017) · Zbl 1480.74153
[5] Idesman, A. V.; Schmidt, M.; Foley, J. R., Accurate 3-D finite element simulation of elastic wave propagation with the combination of explicit and implicit time-integration methods, Wave Motion, 48, 7, 626-634 (2011)
[6] Thompson, L. L.; Pinsky, P. M., Complex wavenumber Fourier analysis of the p-version finite element method, Comput. Mech., 13, 4, 255-275 (1994) · Zbl 0789.73076
[7] Mullen, R.; Belytschko, T., Dispersion analysis of finite element semidiscretizations of the two-dimensional wave equation, Int. J. Numer. Methods Eng., 18, 1, 11-29 (1982) · Zbl 0466.73102
[8] Guddati, M. N.; Yue, B., Modified integration rules for reducing dispersion error in finite element methods, Comput. Methods Appl. Mech. Eng., 193, 3, 275-287 (2004) · Zbl 1075.76574
[9] Idesman, A. V.; Schmidt, M.; Foley, J. R., Accurate finite element modeling of linear elastodynamics problems with the reduced dispersion error, Comput. Mech., 47, 5, 555-572 (2011) · Zbl 1398.74339
[10] Krieg, R. D.; Key, S. W., Transient shell response by numerical time integration, Int. J. Numer. Methods Eng., 7, 3, 273-286 (1973)
[11] Abboud, N. N.; Pinsky, P. M., Finite element dispersion analysis for the three-dimensional second-order scalar wave equation, Int. J. Numer. Methods Eng., 35, 6, 1183-1218 (1992) · Zbl 0764.76033
[12] Wen, W. B.; Duan, S. Y.; Yan, J.; Ma, Y. B.; Wei, K.; Fang, D. N., A quartic B-spline based explicit time integration scheme for structural dynamics with controllable numerical dissipation, Comput. Mech., 59, 3, 403-418 (2017) · Zbl 1398.74448
[13] Noh, G.; Ham, S.; Bathe, K. J., Performance of an implicit time integration scheme in the analysis of wave propagations, Comput. Struct., 123, 9, 93-105 (2013)
[14] Noh, G.; Bathe, K. J., An explicit time integration scheme for the analysis of wave propagations, Comput. Struct., 129, 129, 178-193 (2013)
[15] Wen, W. B.; Wei, K.; Lei, H. S.; Duan, S. Y.; Fang, D. N., A novel sub-step composite implicit time integration scheme for structural dynamics, Comput. Struct., 182, 176-186 (2017)
[16] Wen, W.; Tao, Y.; Duan, S.; Yan, J.; Wei, K.; Fang, D., A comparative study of three composite implicit schemes on structural dynamic and wave propagation analysis, Comput. Struct., 190, 126-149 (2017)
[17] Ainsworth, M.; Wajid, H. A., Optimally blended spectral-finite element scheme for wave propagation and nonstandard reduced integration, Soc. Ind. Appl. Math., 48, 1, 346-371 (2010) · Zbl 1213.65129
[18] Yue, B.; Guddati, M. N., Dispersion-reducing finite elements for transient acoustics, J. Acoust. Soc. Am., 20, 4, 2132-2141 (2005)
[19] Ham, S.; Bathe, K.-J., A finite element method enriched for wave propagation problems, Comput. Struct., 94, 1-12 (2012)
[20] De, S.; Bathe, K. J., The method of finite spheres, Comput. Mech., 25, 4, 329-345 (2000) · Zbl 0952.65091
[21] De, S.; Bathe, K.-J., The method of finite spheres with improved numerical integration, Comput. Struct., 79, 22, 2183-2196 (2001)
[22] Ham, S.; Lai, B.; Bathe, K.-J., The method of finite spheres for wave propagation problems, Comput. Struct., 142, 1-14 (2014)
[23] Kim, K.-T.; Bathe, K.-J., Transient implicit wave propagation dynamics with the method of finite spheres, Comput. Struct., 173, 50-60 (2016)
[24] Auricchio, F.; Veiga, L. B.D.; Hughes, T. J.R.; Reali, A.; Sangalli, G., Isogeometric collocation for elastostatics and explicit dynamics, Comput. Methods Appl. Mech. Eng., 249-252, 2, 2-14 (2012) · Zbl 1348.74305
[25] Nguyen-Thanh, N.; Zhou, K.; Zhuang, X.; Areias, P.; Nguyen-Xuan, H.; Bazilevs, Y.; Rabczuk, T., Isogeometric analysis of large-deformation thin shells using RHT-splines for multiple-patch coupling, Comput. Methods Appl. Mech. Eng., 316, 1157-1178 (2017) · Zbl 1439.74455
[26] Nguyen‐Thanh, N.; Zhou, K., Extended isogeometric analysis based on PHT‐splines for crack propagation near inclusions, Int. J. Numer. Methods Eng. (2017)
[27] Huang, J.; Nguyen-Thanh, N.; Zhou, K., Extended isogeometric analysis based on Bézier extraction for the buckling analysis of Mindlin-Reissner plates, Acta Mech., 228, 9, 1-17 (2017) · Zbl 1381.74095
[28] Chen, L.; Nguyen-Thanh, N.; Nguyen-Xuan, H.; Rabczuk, T.; Bordas, S. P.A.; Limbert, G., Explicit finite deformation analysis of isogeometric membranes, Comput. Methods Appl. Mech. Eng., 277, 277, 104-130 (2014) · Zbl 1423.74525
[29] Hughes, T. J.R.; Reali, A.; Sangalli, G., Duality and unified analysis of discrete approximations in structural dynamics and wave propagation: comparison of p-method finite elements with k-method NURBS, Comput. Methods Appl. Mech. Eng., 197, 49, 4104-4124 (2008) · Zbl 1194.74114
[30] Auricchio, F.; Beirão da Veiga, L.; Hughes, T. J.R.; Reali, A.; Sangalli, G., Isogeometric collocation for elastostatics and explicit dynamics, Comput. Methods Appl. Mech. Eng., 249-252, 2-14 (2012) · Zbl 1348.74305
[31] Wang, D.; Liang, Q.; Zhang, H., A superconvergent isogeometric formulation for eigenvalue computation of three dimensional wave equation, Comput. Mech., 57, 6, 1037-1060 (2016) · Zbl 1382.65374
[32] Idesman, A., Optimal reduction of numerical dispersion for wave propagation problems. Part 1: application to 1-D isogeometric elements, Comput. Methods Appl. Mech. Eng., 317, 970-992 (2017) · Zbl 1439.74423
[33] Wang, D.; Liu, W.; Zhang, H., Novel higher order mass matrices for isogeometric structural vibration analysis, Comput. Methods Appl. Mech. Eng., 260, 9, 92-108 (2013) · Zbl 1286.74051
[34] Cottrell, J. A.; Reali, A.; Bazilevs, Y.; Hughes, T. J.R., Isogeometric analysis of structural vibrations, Comput. Methods Appl. Mech. Eng., 195, 41-43, 5257-5296 (2006) · Zbl 1119.74024
[35] Wen, W.-b.; Jian, K.-l.; Luo, S.-m., 2D numerical manifold method based on quartic uniform B-spline interpolation and its application in thin plate bending, Appl. Math. Mech., 34, 8, 1017-1030 (2013) · Zbl 1286.74123
[36] Wen, W. B.; Yao, K.; Lei, H. S.; Duan, S. Y.; Fang, D. N., A high-order numerical manifold method based on b-spline interpolation and its application in structural dynamics, Int. J. Appl. Mech., 08, 08, Article 1650093 pp. (2016)
[37] Wen, W.-B.; Jian, K.-L.; Luo, S.-M., An explicit time integration method for structural dynamics using septuple B-spline functions, Int. J. Numer. Methods Eng., 97, 9, 629-657 (2014) · Zbl 1352.70050
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.