×

Formulation and analysis of variational methods for time integration of linear elastodynamics. (English) Zbl 0862.73078

A general framework for variational formulations of linear elastodynamics is introduced. Variational formulations which originate from the principle of minimum potential energy, the Hellinger-Reissner principle and the Hu-Washizu principle are considered. They are characterized by the weak enforcement of the velocity-displacement relation and of the initial displacement and velocity. Special cases are obtained by a priori enforcement of these conditions. The time integration algorithms obtained by discretizing in the space and time domains are studied with reference to accuracy, stability and high-frequency behaviour.

MSC:

74S30 Other numerical methods in solid mechanics (MSC2010)
74P10 Optimization of other properties in solid mechanics
74B05 Classical linear elasticity
Full Text: DOI

References:

[1] Hughes, T. J.R., The Finite Element Method—Linear Static and Dynamic Analysis (1987), Prentice-Hall: Prentice-Hall Englewood-Cliffs, NJ · Zbl 0634.73056
[2] Newmark, N. M., A method for computation of structural dynamics, (Proc. Am. Soc. Civ. Engrg., 85 (1959)), 67-94
[3] Wilson, E. L., A computer program for the dynamic stress analysis of underground structures, (SEL report 68-1 (1968), University of California: University of California Berkeley)
[4] Hilber, H. M.; Hughes, T. J.R.; Taylor, R. L., Improved numerical dissipation for time integration algorithms in structural dynamics, Int. J. Earthquake Engrg. Struct. Dyn., 5, 283-292 (1977)
[5] Hilber, H. M.; Hughes, T. J.R., Collocation, dissipation and ‘overshoot’ for time integration schemes in structural dynamics, Int. J. Earthquake Engrg. Struct. Dyn., 6, 99-117 (1978)
[6] Zienkiewicz, O. C.; Wood, W. L.; Hine, N. W.; Taylor, R. L., A unified set of single step algorithms. Part 1: General formulation and applications, Int. J. Numer. Methods Engrg., 20, 1529-1552 (1984) · Zbl 0557.65041
[7] Wood, W. L., A unified set of single step algorithms. Part 2: Theory, Int. J. Numer. Methods Engrg., 20, 2303-2309 (1984) · Zbl 0557.65042
[8] Hoff, C.; Pahl, P. J., Development of an implicit method with numerical dissipation from a generalized single-step algorithm for structural dynamics, Comput. Methods Appl. Mech. Engrg., 67, 367-385 (1988) · Zbl 0619.73002
[9] Hoff, C.; Pahl, P. J., Practical performance of the \(Θ_1\), method and comparison with other dissipative algorithms in structural dynamics, Comput. Methods Appl. Mech. Engrg., 67, 87-110 (1988) · Zbl 0619.73091
[10] Hoff, C.; Hughes, T. J.R.; Hulbert, G.; Pahl, P. J., Extended comparison of the Hilber-Hughes-Taylor α-method and the \(Θ_1\)-method, Comput. Methods Appl. Mech. Engrg., 76, 87-93 (1989) · Zbl 0687.73074
[11] Hulbert, G. M., Time finite element methods for structural dynamics, Int. J. Numer. Methods Engrg., 33, 307-331 (1992) · Zbl 0760.73064
[12] Johnson, C., Numerical Solutions of Partial Differential Equations by the Finite Element Method (1987), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0628.65098
[13] Argyris, J. H.; Scharpf, D. W., Finite elements in time and space, Aeronaut. J. Roy. Aeronaut. Soc., 73, 1041-1044 (1969)
[14] Fried, I., Finite element analysis of time dependent phenomena, AIAA J., 7, 1170-1173 (1969) · Zbl 0179.55001
[15] Geradin, M., On the variational method in the direct integration of the transient structural response, J. Sound Vib., 34, 479-487 (1974) · Zbl 0282.70015
[16] Bailey, C. D., Application of Hamilton’s law of varying action, AIAA J., 13, 1154-1157 (1975) · Zbl 0323.70020
[17] Borri, M.; Lanz, M.; Mantegazza, P., Helicopter rotor dynamics by finite element time discretization, L’Aerotec. Missili Spazio, 60, 193-200 (1981) · Zbl 0485.76013
[18] Borri, M.; Mantegazza, P., Some contribution on structural and dynamic modelling of helicopter rotor blades, L’Aerotec. Missili Spazio, 90, 143-154 (1985) · Zbl 0596.76071
[19] Borri, M.; Ghiringhelli, G. L.; Lanz, M.; Mantegazza, P.; Merlini, T., Dynamic response of mechanical systems by a weak Hamiltonian formulation, Comput. Struct., 20, 495-508 (1985) · Zbl 0574.73091
[20] Borri, M., Helicopter rotor dynamics by finite element time approximation, Comput. Math. Applic., 12A, 149-160 (1986)
[21] Borri, M.; Mello, F.; Atluri, S. N., Variational approaches for dynamics and time-finite-elements: Numerical studies, Comput. Mech., 7, 49-76 (1990) · Zbl 0717.73098
[22] Borri, M.; Bottasso, C.; Mantegazza, P., Basic features of the time finite element approach for dynamics, Meccanica, 27, 119-130 (1992) · Zbl 0758.70003
[23] Aharoni, D.; Bar-Yoseph, P., Mixed finite element formulations in the time domain for solution of dynamic problems, Comput. Mech., 9, 359-374 (1992) · Zbl 0759.70003
[24] Peters, D. A.; Izadpanah, A. P., hp-version finite elements for the space-time domain, Comput. Mech., 3, 73-88 (1988) · Zbl 0627.73081
[25] Cannarozzi, M., Dinamica delle funi: formulazioni variazionali e procedure di integrazione (in Italian), (Atti del Convegno Nazionale in ricordo di Riccardo Baldacci e Michele Capurso. Atti del Convegno Nazionale in ricordo di Riccardo Baldacci e Michele Capurso, 25-27 Ottobre, 1989 (1989)), 513-522, Roma
[26] Barnett, S., Matrices: Methods and Applications (1990), Clarendon Press: Clarendon Press Oxford · Zbl 0706.15001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.