×

Space-time isogeometric analysis of parabolic evolution problems. (English) Zbl 1436.76027

Summary: We present and analyze a new stable space-time Isogeometric Analysis (IgA) method for the numerical solution of parabolic evolution equations in fixed and moving spatial computational domains. The discrete bilinear form is elliptic on the IgA space with respect to a discrete energy norm. This property together with a corresponding boundedness property, consistency and approximation results for the IgA spaces yields an a priori discretization error estimate with respect to the discrete norm. The theoretical results are confirmed by several numerical experiments with low- and high-order IgA spaces.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
35K20 Initial-boundary value problems for second-order parabolic equations
65D07 Numerical computation using splines
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
65M55 Multigrid methods; domain decomposition for initial value and initial-boundary value problems involving PDEs

References:

[1] Thomée, V., (Galerkin Finite Element Methods for Parabolic Problems. Galerkin Finite Element Methods for Parabolic Problems, Springer Series in Computational Mathematics (2006), Springer-Verlag, New York, Inc.: Springer-Verlag, New York, Inc. Secaucus, NJ, USA) · Zbl 1105.65102
[2] Lang, J., Adaptive multilevel solution of nonlinear parabolic PDE systems. Theory, algorithm, and applications, (Lecture Notes in Computational Sciences and Engineering, vol. 16 (2000), Springer Verlag: Springer Verlag Heidelberg, Berlin)
[3] Gander, M., 50 years of time parallel time integration, (Carraro, T.; Geiger, M.; Körkel, S.; Rannacher, R., Multiple Shooting and Time Domain Decomposition (2015), Springer-Verlag), 69-114 · Zbl 1337.65127
[4] Lions, J.-L.; Maday, Y.; Turinici, G., A parareal in time discretization of PDEs, C. R. Acad. Sci., Paris I, 332, 661-668 (2001) · Zbl 0984.65085
[5] Hackbusch, W., Parabolic multigrid methods, (Glowinski, R.; Lions, J. L., Computing Methods in Applied Sciences and Engineering VI (1984), North-Holland: North-Holland Amsterdam), 189-197 · Zbl 0565.65062
[6] Lubich, C.; Ostermann, A., Multigrid dynamic iteration for parabolic equations, BIT, 27, 216-234 (1987) · Zbl 0623.65125
[7] Vandewalle, S., Parallel Multigrid Wavefrom Relaxation for Parabolic Problems (1993), Teubner Skripten zur Numerik: Teubner Skripten zur Numerik Teubner · Zbl 0816.65057
[8] Horton, G.; Vandewalle, S., Fourier mode analysis of the multigrid waveform relaxation and time-parallel multigrid methods, Computing, 54, 317-330 (1995) · Zbl 0826.65087
[9] Deshpande, A.; Malhotra, S.; Schultz, M. H.; Douglas, C. C., A rigorous analysis of time domain parallelism, Parallel Algorithms Appl., 6, 1, 53-62 (1995) · Zbl 1049.68586
[10] M.J. Gander, M. Neumüller, Analysis of a Time Multigrid Algorithm for DG-Discretizations in Time, NuMa-Report 2014-07, Johannes Kepler University Linz, Institute for Computational Mathematics, Linz, September, 2014.; M.J. Gander, M. Neumüller, Analysis of a Time Multigrid Algorithm for DG-Discretizations in Time, NuMa-Report 2014-07, Johannes Kepler University Linz, Institute for Computational Mathematics, Linz, September, 2014.
[11] M.J. Gander, M. Neumüller, Analysis of a New Space-Time Parallel Multigrid Algorithm for Parabolic Problems, NuMa-Report 2014-08, Johannes Kepler University Linz, Institute for Computational Mathematics, Linz, November, 2014.; M.J. Gander, M. Neumüller, Analysis of a New Space-Time Parallel Multigrid Algorithm for Parabolic Problems, NuMa-Report 2014-08, Johannes Kepler University Linz, Institute for Computational Mathematics, Linz, November, 2014.
[12] M. Neumüller, Space-Time Methods: Fast Solvers and Applications, in: Monographic Series TU Graz: Computation in Engineering and Science, vol. 20, TU Graz, 2013.; M. Neumüller, Space-Time Methods: Fast Solvers and Applications, in: Monographic Series TU Graz: Computation in Engineering and Science, vol. 20, TU Graz, 2013.
[13] Neumüller, M.; Steinbach, O., Refinement of flexible space-time finite element meshes and discontinuous Galerkin methods, Comput. Vis. Sci., 14, 189-205 (2011) · Zbl 1522.65177
[14] Neumüller, M.; Steinbach, O., A DG space-time domain decomposition method, (Bank, R.; Holst, M.; Widlund, O.; Xu, J., Domain Decomposition Methods in Science and Engineering XX (2013), Springer: Springer Berlin, Heidelberg), 623-630
[15] E. Karabelas, M. Neumüller, Generating Admissible Space-Time Meshes for Moving Domains in \(( d + 1 )\); E. Karabelas, M. Neumüller, Generating Admissible Space-Time Meshes for Moving Domains in \(( d + 1 )\)
[16] van der Vegt, J. J.W.; van der Ven, H., Space-time discontinuous Galerkin finite element method with dynamic grid motion for inviscid compressible flows. I. General formulation, J. Comput. Phys., 182, 546-585 (2002) · Zbl 1057.76553
[17] Andreev, R., Stability of sparse space-time finite element discretizations of linear parabolic evolution equations, IMA J. Numer. Anal., 33, 1, 242-260 (2013) · Zbl 1262.65114
[18] Bank, R. E.; Metti, M. S., An error analysis of some higher order space-time moving finite elements, Comput. Vis. Sci., 16, 219-229 (2013) · Zbl 1380.65247
[19] Tezduyar, T. E.; Behr, M.; Liou, J., A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure. I: The concept and the preliminary numerical tests, Comput. Methods Appl. Mech. Engrg., 94, 3, 339-351 (1992) · Zbl 0745.76044
[20] Tezduyar, T. E.; Behr, M.; Mittal, S.; Liou, J., A new strategy for finite element computations involving moving boundaries and interfaces—the deforming-spatial-domain/space-time procedure: II. Computation of free-surface flows, two-liquid flows, and flows with drifting cylinders, Comput. Methods Appl. Mech. Engrg., 94, 3, 353-371 (1992) · Zbl 0745.76045
[21] Tezduyar, T. E.; Sathe, S., Enhanced-discretization space-time technique (EDSTT), Comput. Methods Appl. Mech. Engrg., 193, 1385-1401 (2004) · Zbl 1079.76585
[22] Tezduyar, T. E., Interface-tracking and interface-capturing techniques for finite element computation of moving boundaries and interfaces, Comput. Methods Appl. Mech. Engrg., 195, 23, 2983-3000 (2006) · Zbl 1176.76076
[23] Masud, A.; Hughes, T. J.R, A space-time Galerkin/least-squares finite element formulation of the Navier-Stokes equations for moving domain problems, Comput. Methods Appl. Mech. Engrg., 146, 91-126 (1997) · Zbl 0899.76259
[24] Behr, M., Simplex space-time meshes in finite element simulations, Internat. J. Numer. Methods Fluids, 57, 1421-1434 (2008) · Zbl 1145.65070
[25] Lehrenfeld, C., The Nitsche XFEM-DG space-time method and its implementation in three space dimensions, SIAM J. Sci. Comput., 37, 1, A245-A270 (2015) · Zbl 1326.65162
[26] Babuška, I.; Janik, T., The \(h-p\) version of the finite element method for parabolic equations. I. The \(p\)-version in time, Numer. Methods Partial Differential Equations, 5, 4, 363-399 (1989) · Zbl 0693.65078
[27] Babuška, I.; Janik, T., The \(h-p\) version of the finite element method for parabolic equations. II. The \(h-p\) version in time, Numer. Methods Partial Differential Equations, 6, 4, 343-369 (1990) · Zbl 0725.65089
[28] Schwab, C.; Stevenson, R., Space-time adaptive wavelet methods for parabolic evolution problems, Math. Comp., 78, 1293-1318 (2009) · Zbl 1198.65249
[29] Chegini, N.; Stevenson, R., Adaptive wavelet schemes for parabolic problems: sparse matrices and numerical results, SIAM J. Numer. Anal., 49, 1, 182-212 (2011) · Zbl 1225.65094
[30] Mollet, C., Stability of Petrov-Galerkin discretizations: Application to the space-time weak formulation for parabolic evolution problems, Comput. Methods Appl. Math., 14, 2, 231-255 (2014) · Zbl 1290.65086
[31] Urban, K.; Patera, A. T., An improved error bound for reduced basis approximation of linear parabolic problems, Math. Comp., 83, 1599-1615 (2014) · Zbl 1320.65129
[32] Steinbach, O., Space-time finite element methods for parabolic problems, Comput. Methods Appl. Math., 15, 4, 551-566 (2015) · Zbl 1329.65229
[33] Hansbo, P., Space-time oriented streamline diffusion methods for nonlinear conservation laws in one dimension, Commun. Numer. Methods. Eng., 10, 3, 203-215 (1994) · Zbl 0799.65104
[34] Johnson, C., Numerical Solution of Partial Differential Equations by the Finite Element Method (2009), Dover Publications, Inc.: Dover Publications, Inc. Mineola, NY, Reprint of the 1987 edition · Zbl 1191.65140
[35] Johnson, C.; Nävert, U.; Pitkäranta, J., Finite element methods for linear hyperbolic problems, Comput. Methods Appl. Mech. Engrg., 45, 1-3, 285-312 (1984) · Zbl 0526.76087
[36] Johnson, C.; Saranen, J., Streamline diffusion methods for the incompressible Euler and Navier-Stokes equations, Math. Comp., 47, 175, 1-18 (1986) · Zbl 0609.76020
[37] R. Bank, P. Vassilevski, Space-time discretization and solvers via time dependent embedding, private communication, 2014.; R. Bank, P. Vassilevski, Space-time discretization and solvers via time dependent embedding, private communication, 2014.
[38] R.E. Bank, P.S. Vassilevski, L.T. Zikatanov, Arbitrary Dimension Convection-Diffusion Schemes for Space-Time Discretizations, Technical Report LLNL-TR-681077, Lawrence Livermore National Laboratory, 2016.; R.E. Bank, P.S. Vassilevski, L.T. Zikatanov, Arbitrary Dimension Convection-Diffusion Schemes for Space-Time Discretizations, Technical Report LLNL-TR-681077, Lawrence Livermore National Laboratory, 2016. · Zbl 1348.65139
[39] Tröltzsch, F., Optimal Control of Partial Differential Equations: Theory, Methods, and Applications (2010), Graduate Studies in Mathematics, American Mathematical Society · Zbl 1195.49001
[40] Takizawa, K.; Tezduyar, T. E., Multiscale space-time fluid-structure interaction techniques, Comput. Mech., 48, 3, 247-267 (2011) · Zbl 1398.76128
[41] Takizawa, K.; Henicke, B.; Puntel, A.; Kostov, N.; Tezduyar, T. E., Space-time techniques for computational aerodynamics modeling of flapping wings of an actual locust, Comput. Mech., 50, 6, 743-760 (2012) · Zbl 1286.76179
[42] Takizawa, K.; Kostov, N.; Puntel, A.; Henicke, B.; Tezduyar, T. E., Space-time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle, Comput. Mech., 50, 6, 761-778 (2012) · Zbl 1286.76180
[43] Takizawa, K.; Tezduyar, T. E.; McIntyre, S.; Kostov, N.; Kolesar, R.; Habluetzel, C., Space-time VMS computation of wind-turbine rotor and tower aerodynamics, Comput. Mech., 53, 1, 1-15 (2014) · Zbl 1398.76129
[44] Takizawa, K.; Tezduyar, T. E., Space-time computation techniques with continuous representation in time (ST-C), Comput. Mech., 53, 1, 91-99 (2014)
[45] Karabelas, E., Space-time discontinuous Galerkin methods for cardic electro-mechanics (2015), Technische Universität Graz, (Ph.D. thesis)
[46] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 4135-4195 (2005) · Zbl 1151.74419
[47] Bazilevs, Y.; Beirão da Veiga, L.; Cottrell, J. A.; Hughes, T. J.R.; Sangalli, G., Isogeometric analysis: Approximation, stability and error estimates for \(h\)-refined meshes, Comput. Methods Appl. Mech. Engrg., 194, 4135-4195 (2006) · Zbl 1103.65113
[48] Cottrell, J. A.; Hughes, T. J.R.; Bazilevs, Y., Isogeometric Analysis: Toward Integration of CAD and FEA (2009), John Wiley & Sons: John Wiley & Sons Chichester · Zbl 1378.65009
[49] O.A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics, Nauka, Moscow, 1973 (in Russian); Appl. Math. Sci. 49, Springer, 1985 (transl.).; O.A. Ladyzhenskaya, The Boundary Value Problems of Mathematical Physics, Nauka, Moscow, 1973 (in Russian); Appl. Math. Sci. 49, Springer, 1985 (transl.).
[50] O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type, Nauka, Moscow, 1967 (in Russian); AMS, Providence, RI, 1968 (transl.).; O.A. Ladyzhenskaya, V.A. Solonnikov, N.N. Uraltseva, Linear and Quasilinear Equations of Parabolic Type, Nauka, Moscow, 1967 (in Russian); AMS, Providence, RI, 1968 (transl.). · Zbl 0164.12302
[51] Wloka, J., Partielle Differentialgleichungen (1987), Teubner Verlag: Teubner Verlag Stuttgrat: Cambridge University Press, (transl.)
[52] Zeidler, E., Nonlinear Functional Analysis and its Applications. II/A: Linear monotone operators (1990), Springer-Verlag: Springer-Verlag New York · Zbl 0684.47029
[53] Tagliabue, A.; Dedé, L.; Quarteroni, A., Isogeometric analysis and error estimates for high order partial differential equations in fluid dynamics, Comput. & Fluids, 102, 277-303 (2014) · Zbl 1391.76360
[54] Evans, J. A.; Hughes, T. J.R., Explicit trace inequalities for isogeometric analysis and parametric hexahedral finite elements, Numer. Math., 123, 2, 259-290 (2013) · Zbl 1259.65169
[55] Beirão da Veiga, L.; Buffa, A.; Rivas, J.; Sangalli, G., Some estimates for hpk-refinement in isogeometric analysis, Numer. Math., 118, 2, 271-305 (2011) · Zbl 1222.41010
[56] B. Jüttler, U. Langer, A. Mantzaflaris, S.E. Moore, W. Zulehner, Geometry+simulation modules: implementing isogeometric analysis, in: P. Steinmann, G. Leugering, (Eds.), PAMM, vol. 14 of 1, Erlangen, 2014, pp. 961-962.; B. Jüttler, U. Langer, A. Mantzaflaris, S.E. Moore, W. Zulehner, Geometry+simulation modules: implementing isogeometric analysis, in: P. Steinmann, G. Leugering, (Eds.), PAMM, vol. 14 of 1, Erlangen, 2014, pp. 961-962.
[57] C. Koutschan, M. Neumüller, S. Radu, Inverse Inequality Estimates with Symbolic Computation, RICAM-Report 2016-01, Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Linz, 2016, available at http://www.ricam.oeaw.ac.at/files/reports/16/rep16-01.pdfhttp://arxiv.org/abs/1602.01304; C. Koutschan, M. Neumüller, S. Radu, Inverse Inequality Estimates with Symbolic Computation, RICAM-Report 2016-01, Johann Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Linz, 2016, available at http://www.ricam.oeaw.ac.at/files/reports/16/rep16-01.pdfhttp://arxiv.org/abs/1602.01304
[58] Schwab, C., \(p\)- and \(h p\)-finite element methods, (Numerical Mathematics and Scientific Computation (1998), The Clarendon Press, Oxford University Press: The Clarendon Press, Oxford University Press New York), Theory and applications in solid and fluid mechanics · Zbl 0910.73003
[59] U. Langer, I. Toulopoulos, Analysis of Discontinuous Galerkin IgA Approximations to Elliptic Boundary Value Problems, NFN Technical Report 15, Johannes Kepler University, Geometry and Simulation, Linz, 2014, also available at http://arxiv.org/abs/1408.0182; U. Langer, I. Toulopoulos, Analysis of Discontinuous Galerkin IgA Approximations to Elliptic Boundary Value Problems, NFN Technical Report 15, Johannes Kepler University, Geometry and Simulation, Linz, 2014, also available at http://arxiv.org/abs/1408.0182 · Zbl 1388.65152
[60] Langer, U.; Mantzaflaris, A.; Moore, S. E.; Toulopoulos, I., Multipatch discontinuous Galerkin isogeometric analysis, (Jüttler, B.; Simeon, B., Isogeometric Analysis and Applications, IGAA 2014. Isogeometric Analysis and Applications, IGAA 2014, Lecture Notes in Computer Science, vol. 107 (2015), Springer: Springer Heidelberg), 1-32 · Zbl 1334.65194
[61] Scott, M. A.; Simpson, R. N.; Evans, J. A.; Lipton, S.; Bordas, S. P.A.; Hughes, T. J.R.; Sederberg, T. W., Isogeometric boundary element analysis using unstructured T-splines, Comput. Methods Appl. Mech. Engrg., 254, 197-221 (2013) · Zbl 1297.74156
[62] Giannelli, C.; Jüttler, B.; Speleers, H., THB-splines: The truncated basis for hierarchical splines, Comput. Aided Geom. Design, 29, 7, 485-498 (2012) · Zbl 1252.65030
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.