×

A continuous space-time finite element method for the wave equation. (English) Zbl 0846.65048

The main purpose of this paper is to demonstrate new variational techniques to analyze the high-order accurate space-time finite element methods for the nonhomogeneous second-order wave equation. The authors prove both global convergence and nodal in time superconvergence error estimates, thereby giving a unified treatment of the spatial and temporal discretization. The method is based on tensor-product spaces for the full discretization. The results of several numerical experiments are given.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65L05 Numerical methods for initial value problems involving ordinary differential equations
65M15 Error bounds for initial value and initial-boundary value problems involving PDEs
65M12 Stability and convergence of numerical methods for initial value and initial-boundary value problems involving PDEs
Full Text: DOI

References:

[1] A. K. Aziz and Peter Monk, Continuous finite elements in space and time for the heat equation, Math. Comp. 52 (1989), no. 186, 255 – 274. · Zbl 0673.65070
[2] I. Babuška and T. Janik, The h-p version of the finite element method, SIAM J. Numer. Anal. 5 (1990), 363–399. · Zbl 0693.65078
[3] Garth A. Baker and James H. Bramble, Semidiscrete and single step fully discrete approximations for second order hyperbolic equations, RAIRO Anal. Numér. 13 (1979), no. 2, 75 – 100 (English, with French summary). · Zbl 0405.65057
[4] L. Bales and I. Lasiecka, Continuous finite elements in space and time for the nonhomogeneous wave equation, Comput. Math. Appl. 27 (1994), no. 3, 91 – 102. · Zbl 0792.65074 · doi:10.1016/0898-1221(94)90048-5
[5] L. Bales and I. Lasiecka, Negative norm estimates for fully discrete finite element approximations to the wave equation with nonhomogeneous \?\(_{2}\) Dirichlet boundary data, Math. Comp. 64 (1995), no. 209, 89 – 115. · Zbl 0920.65058
[6] Jerry L. Bona, Vassilios A. Dougalis, and Ohannes A. Karakashian, Fully discrete Galerkin methods for the Korteweg-de Vries equation, Comput. Math. Appl. Ser. A 12 (1986), no. 7, 859 – 884. · Zbl 0597.65072
[7] J. DeFrutos and J. M. Sanz-Serna, Accuracy and conservation properties in numerical integration: the case of the Korteweg-deVries equation, preprint. · Zbl 0876.65068
[8] Richard S. Falk and Gerard R. Richter, Analysis of a continuous finite element method for hyperbolic equations, SIAM J. Numer. Anal. 24 (1987), no. 2, 257 – 278. · Zbl 0619.65100 · doi:10.1137/0724021
[9] Donald A. French and Søren Jensen, Long-time behaviour of arbitrary order continuous time Galerkin schemes for some one-dimensional phase transition problems, IMA J. Numer. Anal. 14 (1994), no. 3, 421 – 442. · Zbl 0806.65132 · doi:10.1093/imanum/14.3.421
[10] D. A. French and T. E. Peterson, A space-time finite element method for the second order wave equation, Report CMA-MR13-91, Centre for Mathematics and its Applications, Canberra.
[11] Donald A. French and Jack W. Schaeffer, Continuous finite element methods which preserve energy properties for nonlinear problems, Appl. Math. Comput. 39 (1990), no. 3, 271 – 295. · Zbl 0716.65084
[12] R. T. Glassey, Convergence of an energy-preserving scheme for the Zakharov equations in one space dimension, Math. Comp. 58 (1992), no. 197, 83 – 102. · Zbl 0746.65066
[13] Paula de Oliveira, On the characterization of finite differences ”optimal” meshes, J. Comput. Appl. Math. 36 (1991), no. 2, 137 – 148. · Zbl 0744.65062 · doi:10.1016/0377-0427(91)90022-C
[14] Claes Johnson, Discontinuous Galerkin finite element methods for second order hyperbolic problems, Comput. Methods Appl. Mech. Engrg. 107 (1993), no. 1-2, 117 – 129. · Zbl 0787.65070 · doi:10.1016/0045-7825(93)90170-3
[15] Ohannes Karakashian, Georgios D. Akrivis, and Vassilios A. Dougalis, On optimal order error estimates for the nonlinear Schrödinger equation, SIAM J. Numer. Anal. 30 (1993), no. 2, 377 – 400. · Zbl 0774.65091 · doi:10.1137/0730018
[16] A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. · Zbl 0516.47023
[17] G. R. Richter, An explicit finite element method for the wave equation, preprint. · Zbl 0816.65062
[18] Walter Strauss and Luis Vazquez, Numerical solution of a nonlinear Klein-Gordon equation, J. Comput. Phys. 28 (1978), no. 2, 271 – 278. · Zbl 0387.65076 · doi:10.1016/0021-9991(78)90038-4
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.