×

On the Riemann problem and interaction of elementary waves for two-layered blood flow model through arteries. (English) Zbl 1536.76155

Summary: In this paper, we focus on the Riemann problem for two-layered blood flow model, which is represented by a system of quasi-linear hyperbolic partial differential equations (PDEs) derived from the Euler equations by vertical averaging across each layer. We consider the Riemann problem with varying velocities and equal constant density through arteries. For instance, the flow layer close to the wall of vessel has a slower average speed than the layer far from the vessel because of the viscous effect of the blood vessel. We first establish the existence and uniqueness of the corresponding Riemann solution by a thorough investigation of the properties of elementary waves, namely, shock wave, rarefaction wave, and contact discontinuity wave. Further, we extensively analyze the elementary wave interaction between rarefaction wave and shock wave with contact discontinuity and rarefaction wave and shock wave. The global structure of the Riemann solutions after each wave interaction is explicitly constructed and graphically illustrated towards the end.
© 2023 John Wiley & Sons Ltd.

MSC:

76Z05 Physiological flows
92C35 Physiological flow
35L65 Hyperbolic conservation laws
35L67 Shocks and singularities for hyperbolic equations
76M12 Finite volume methods applied to problems in fluid mechanics
Full Text: DOI

References:

[1] L.Euler, Principia pro motu sanguinis per arterias determinando, Opera Postuma2 (1862), 814-23.
[2] T.Young, Hydraulic investigations, subservient to an intended Croonian lecture on the motion of the blood, Philos Trans. R. Soc. Lond.98 (1808), 164-86.
[3] V.Melicher and V.Gajdosik, A numerical solution of a one‐dimensional blood flow model—moving grid approach, J. Comput. Appl. Math.215 (2008), 512-520. · Zbl 1134.92318
[4] O.Delestre and P. Y.Lagree, A ‘well‐balanced’ finite volume scheme for blood flow simulation, Int. J. Numer. Methods Fluids72 (2013), 177-205. · Zbl 1455.76215
[5] S. J.Sherwin, L.Formaggia, J.Peiro, and V.Franke, Computational modelling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system, Int. J. Numer. Methods Fluids43 (2003), 673-700. · Zbl 1032.76729
[6] J.Brittona and Y.Xing, Well‐balanced discontinuous Galerkin methods for the one‐dimensional blood flow through arteries model with man‐at‐eternal‐rest and living‐man equilibria, Comput. Fluids203 (2020), 104493. · Zbl 1519.76139
[7] G. I.Montecinos, L. O.Muller, and E. F.Toro, Hyperbolic reformulation of a 1D viscoelastic blood flow model and ADER finite volume schemes, J. Comput. Phys.266 (2014), 101-123. · Zbl 1323.92065
[8] O.Delestre, J.‐M.Fullana, P.‐Y.Lagree, and A.Ghigo, A shallow water with variable pressure like model for blood flow modeling and simulation. arXiv:1509.01917. · Zbl 1378.76151
[9] E.Boileau, P.Nithiarasu, P. J.Blanco, et al., A benchmark study of numerical schemes for one‐dimensional arterial blood flow modelling, Int. J. Numer. Methods Biomed. Eng.31 (2015), 2732.
[10] B.Riemann, Ueber die Fortpflanzung ebener Luftwellen von endlicher Schwingungsweite, Gott. Abh. Math. Cl.8 (1860), 43-65.
[11] S.Chu and A.Kurganov, Flux globalization based well‐balanced central‐upwind scheme for one‐dimensional blood flow models, Calcolo60 (2023), 2. · Zbl 1504.65184
[12] J.Murillo and P.Garcia‐Navarro, A Roe type energy balanced solver for 1D arterial blood flow and transport, Comput. Fluids117 (2015), 149-167. · Zbl 1390.76941
[13] G. I.Montecinos, A.Santaca, M.Celant, L. O.Muller, and E. F.Toro, ADER scheme with a simplified solver for the generalized Riemann problem and an average ENO reconstruction procedure. Application to blood flow, Comput. Fluids248 (2022), 105685. · Zbl 1521.76456
[14] C.Chalons, A. D.Grosso, and E. F.Toro, Numerical approximation and uncertainty quantification for arterial blood flow models with viscoelasticity, J. Comput. Phys.457 (2022), 111071. · Zbl 1515.76176
[15] L. O.Muller, G.Leugering, and P. J.Blanco, Consistent treatment of viscoelastic effects at junctions in one‐dimensional blood flow models, J. Comput. Phys.314 (2016), 167-193. · Zbl 1349.76369
[16] W.Sheng, Q.Zhang, and Y.Zheng, A direct Eulerian GRP scheme for a blood flow model in arteries. arXiv:2103.02224. · Zbl 1486.92004
[17] S.Chakravarty and P. K.Sarifuddin, Mandal, Unsteady flow of a two‐layer blood stream past a tapered flexible artery under stenotic conditions, Comput. Appl. Math.4 (2004), 391-409. · Zbl 1060.35145
[18] R. N.Pralhad and D. H.Schultz, Two‐layered blood flow in stenosed tubes for different diseases, Biorheology25 (1988), 715-26.
[19] V. P.Srivastava, R.Rastogi, and R.Vishnoi, A two‐layered suspension blood flow through an overlapping stenosis, Comput. Math. Appl.60 (2010), 432-441. · Zbl 1201.76329
[20] K.Haldar and LAndersson, Two‐layered model of blood flow through stenosed arteries, Acta Mechanica117 (1996), 221-228. · Zbl 0868.76106
[21] B. D.Sharma and P. K.Yadav, A two‐layer mathematical model of blood flow in porous constricted blood vessels, Transp. Porous Media120 (2017), 239-254.
[22] Q.Zhang, W.Sheng, and T.Xiao, Riemann problem and Godunov‐type scheme for a two‐layer blood flow model, Appl. Math. Lett.135 (2023), 108437. · Zbl 1498.76124
[23] L. O.Muller and E. F.Toro, A global multi‐scale mathematical model for the human circulation with emphasis on the venous system, Int. J. Numer. Methods Biomed. Eng.30 (2014), 681-725.
[24] E. F.Toro and A.Siviglia, Simplified blood flow model with discontinuous vessel properties: analysis and exact solutions, Modeling of Physiological Flows, Springer‐Verlag, Italia, (2012).
[25] B.Ghitti, C.Berthon, M. H.Le, and E. F.Toro, A fully well‐balanced scheme for the 1D blood flow equations with friction source term, J. Comput. Phys.421 (2020), 109750. · Zbl 07508369
[26] B. S.Brook, S. A. E. G.Falle, and T. J.Pedley, Numerical solutions for unsteady gravity‐driven flows in collapsible tubes: evolution and roll‐wave instability of a steady state, J. Fluid Mech.396 (1999), 223-256. · Zbl 0971.76052
[27] C.Cancelli and T.Pedley, A separated‐flow model for collapsible‐tube oscillations, J. Fluid Mech.157 (1985), 375-404.
[28] L. O.Muller, C.Pares, and E. F.Toro, Well‐balanced high‐order numerical schemes for one‐dimensional blood flow in vessels with varying mechanical properties, J. Comput. Phys.242 (2013), 53-85. · Zbl 1323.92066
[29] L. O.Muller and E. F.Toro, Well‐balanced high‐order solver for blood flow in networks of vessels with variable properties, Int. J. Numer. Methods Biomed. Eng.29 (2013), 1388-1411.
[30] W.Sheng, Q.Zhang, and Y.Zheng, The Riemann problem for a blood flow model in arteries, Comput. Phys. Commun.27 (2020), 227-250. · Zbl 1476.35139
[31] Q.Zhanga and S.Liu, The Riemann problem and a Godunov‐type scheme for a traffic flow model on two lanes with two velocities, Appl. Math. Comput.436 (2023), 127502. · Zbl 1510.35183
[32] N.Aguillon, E.Audusse, E.Godlewski, and M.Parisot, Analysis of the Riemann problem for a shallow water model with two velocities, SIAM J. Math. Anal.50 (2018), 4861-4888. · Zbl 1403.35224
[33] R.Courant and K. O.Friedrichs, Supersonic flows and shock waves, Interscience, New York, 1948. · Zbl 0041.11302
[34] S. M.Sahoo, T.Raja Sekhar, and G. P.Raja Sekhar, Optimal classification, exact solutions, and wave interactions of Euler system with large friction, Math. Methods Appl. Sci.43 (2020), 5744-5757. · Zbl 1454.35269
[35] Minhajul and T.Raja Sekhar, Nonlinear wave interactions in a macroscopic production model, Acta Math. Scientia41 (2021), 764-780. · Zbl 1513.35368
[36] K.Ambika and R.Radha, Riemann problem in non‐ideal gas dynamics, Indian J. Pure Appl. Math.47 (2016), 501-521. · Zbl 1373.35194
[37] S.Kuila and T.Raja Sekhar, Interaction of weak shocks in drift‐flux model of compressible two‐phase flows, Chaos Solitons Fract.107 (2018), 222-227. · Zbl 1380.76150
[38] S.Kuila, D.Zeidan, and T.Raja Sekhar, Weak shock wave interactions in isentropic Cargo‐LeRoux model of flux perturbation, Math. Methods Appl. Sci.45 (2022), 7526-7537. · Zbl 1529.35301
[39] Z.Shao, Global structure stability of Riemann solutions for linearly degenerate hyperbolic conservation laws under small BV perturbations of the initial data, Nonlinear Anal.: Real World Appl.11 (2010), 3791-3808. · Zbl 1207.35221
[40] Z.Shao, The Riemann problem for the relativistic full Euler system with generalized Chaplygin proper energy density-pressure relation, Z. Angew. Math. Phys.69 (2018), 44. · Zbl 1392.35218
[41] Z.Shao, The Riemann problem for a traffic flow model, Phys. Fluids35 (2023), 036104.
[42] W.Jiang, T.Chen, T.Li, and Z.Wang, The wave interactions of an improved Aw‐Rascle‐Zhang model with a non‐genuinely nonlinear field, Discret. Contin. Dyn. Syst.‐B28 (2023), 1528-1552. · Zbl 1505.35089
[43] A.Wang, W.Yu, and Y.Zhang, The interaction of waves in the zero‐pressure Euler equations with a Coulomb‐like friction term, Math. Probl. Eng.2022 (2022), 4837968.
[44] J. P.Chaudhary and L. P.Singh, Riemann problem and elementary wave interactions in dusty gas, Appl. Math. Comput.342 (2019),147-165. · Zbl 1428.35209
[45] S.Kuila and T.Raja Sekhar, Wave interactions in non‐ideal isentropic magnetogasdynamics, Int. J. Appl. Comput. Math.3 (2017),1809-1831. · Zbl 1397.76171
[46] S.Jana and S.Kuila, Exact solution of the flux perturbed Riemann problem for Cargo‐LeRoux model in a van der Waals gas, Chaos Solitons Fract.161 (2022), 112369. · Zbl 1504.35193
[47] Y.Liu and W.Sun, Riemann problem and wave interactions in magnetogasdynamics, J. Math. Anal. Appl.397 (2013), 454-466. · Zbl 1256.35087
[48] T.Chang and L.Hsiao, The Riemann problem and interaction of waves in gas dynamics, Vol. 41, Pitman Monographs, Longman Scientific and technical, Essex, 1989. · Zbl 0698.76078
[49] Y.Liu and W.Sun, Elementary wave interactions in magnetogasdynamics, Indian J. Pure Appl. Math.47 (2016), 33-57. · Zbl 1404.35364
[50] Y.Liu and W.Sun, Elementary wave interactions for a simplified model in magnetogasdynamics, Eng. Lett.28 (2020), 1081-1087.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.