×

ADER scheme with a simplified solver for the generalized Riemann problem and an average ENO reconstruction procedure. Application to blood flow. (English) Zbl 1521.76456

Summary: We present numerical schemes for solving hyperbolic balance laws, admitting stiff source terms, to high-order of accuracy in both space and time. The schemes belong to the ADER family of methods and as such rest on two building blocks, namely a non-linear spatial reconstruction procedure and the solution of a generalized Riemann problem (GRP), in which the data is piece-wise smooth and the equations include source terms. This paper presents contributions on both building blocks. Concerning spatial reconstruction we present various versions of a new Essentially Non-Oscillatory (ENO) type reconstruction, called here Averaged ENO (AENO). As to the generalized Riemann problem, we present an improved solver based on two basic ingredients, namely the implicit Taylor series expansion reported in [the last author and the first author, J. Comput. Phys. 303, 146–172 (2015; Zbl 1349.76399)] and the simplified Cauchy-Kowalewskaya procedure reported in [the first author and D. S. Balsara, Comput. Fluids 156, 220–238 (2017; Zbl 1390.76496)]. The resulting ADER schemes are implemented and systematically assessed for the linear advection equation and for non-linear hyperbolic system that governs blood flow, with a tube law admitting arteries or veins. For the linear advection equation we implement the new schemes to accuracy ranging from first to seventh order; convergence rate studies confirm that the theoretically expected accuracy is achieved for most versions of the various schemes studied. For the non-linear system we implement the new schemes to accuracy ranging from first to fifth order. Convergence rate studies based on problems with smooth solutions confirm again that the methods attain the theoretically expected accuracy. For the non-linear system the methods are also assessed for Riemann problems for blood flow in arteries with exact solution containing smooth parts and discontinuities, elastic jumps (shocks), and contact discontinuities. Furthermore, for the non-linear system the methods are also assessed for blood flow in veins for a steady problem with smooth analytical solution. As a final assessment of the potential applicability of the methods for realistic simulations in haemodynamics, we apply the methods on a network of 37 blood vessels, for which experimental data is available. The new schemes presented in this paper are simpler than existing versions of ADER methods, involving implicit Taylor series and the Cauchy-Kowalewskaya procedure, published in the literature and, overall, the computational results demonstrate that the new schemes give comparable or superior results, with respect to existing high-order schemes.

MSC:

76M12 Finite volume methods applied to problems in fluid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
76Z05 Physiological flows
92C35 Physiological flow

Software:

HE-E1GODF
Full Text: DOI

References:

[1] Zamboni, P.; Menegatti, E.; Bartolomei, I.; Galeotti, R.; Malagoni, A. M.; Tacconi, G., Intracranial venous haemodynamics in multiple sclerosis, Curr Neurovasc Res, 4, 252-258 (2007)
[2] Zamboni, P.; Galeotti, R.; Menegatti, E.; Malagoni, A. M.; Tacconi, G.; Dall’Ara, S., Chronic cerebrospinal venous insufficiency in patients with multiple sclerosis, J Neurol Neurosurg Psychiatr, 80, 392-399 (2009)
[3] Zamboni, P.; Galeotti, R., The chronic cerebrospinal venous insufficiency syndrome, Phlebology, 25, 269-279 (2010)
[4] Coen, M.; Menegatti, E.; Salvi, F.; Mascoli, F.; Zamboni, P.; Gabbiani, G., Altered collagen expression in jugular veins in multiple sclerosis, Cardiovasc Pathol, 22, 1, 33-38 (2013)
[5] Bruno, A.; Califano, L.; Mastrangelo, D.; De Vizia, M.; Benedetto, B.; Salafia, F., Chronic cerebrospinal venous insufficiency in Ménière’s disease: diagnosis and treatment, Veins Lymphatics, 3, 77-80 (2014)
[6] Formaggia, L.; Lamponi, D.; Quarteroni, A., One-dimensional models for blood flow in arteries, J Eng Math, 47, 251-276 (2003) · Zbl 1070.76059
[7] Quarteroni, A.; Formaggia, L., Mathematical modelling and numerical simulation of the cardiovascular system, Handb Num Anal, 12, 31-127 (2004)
[8] Formaggia, L.; Quarteroni, A.; Veneziani, A., Cardiovascular mathematics: modeling and simulation of the circulatory system (2009), Springer-Verlag Italia, Milano · Zbl 1300.92005
[9] Steele, B. N.; Wan, J.; Ku, P.; Hughes, T. J.; taylor, C. A., In vivo validation of a one-dimensional finite-element method for predicting blood flow in cardiovascular bypass grafts, IEEE Trans Biomed Eng, 50, 649-655 (2003)
[10] Sherwin, S. J.; Franke, V.; Peiró, J.; Parker, K., One-dimensional modelling of a vascular network in space-time variables, J Eng Math, 47, 3-4, 217-250 (2003) · Zbl 1200.76230
[11] Reymond, P.; Merenda, F.; Perren, F.; Rüfenacht, D.; Stergiopulos, N., Validation of a one-dimensional model of the systemic arterial tree, Am J Physiol - Heart Circul Physiol, 297, 208-222 (2009)
[12] Xiao, N.; Alastruey, J.; Figueroa, C. A., A systematic comparison between 1-D and 3-D hemodynamics in compliant arterial models, Int J Numer Methods Biomed Eng, 30, 2, 204-231 (2014)
[13] Blanco, P.; Watanabe, S.; Feijóo, R., Identification of vascular territory resistances in one-dimensional hemodynamics simulations, J Biomech, 45, 12, 2066-2073 (2012)
[14] Müller, L. O.; Parés, C.; Toro, E. F., Well-balanced high-order numerical schemes for one-dimensional blood flow in vessels with varying mechanical properties, J Comput Phys, 242, 53-85 (2013) · Zbl 1323.92066
[15] Rideout, V. C.; Dick, D. E., Difference-differential equations for fluid flow in distensible tubes, IEEE Trans Biomed Eng, BME-14, 3, 171-177 (1967)
[16] Conrad, W. A., Pressure-flow relationships in collapsible tubes, IEEE Trans Biomed Eng, 4, 284-295 (1969)
[17] Alastruey, J.; Khir, A. W.; Matthys, K. S.; Segers, P.; Sherwin, S. J.; Verdonck, P. R., Pulse wave propagation in a model human arterial network: Assessment of 1-D visco-elastic simulations against in vitro measurements, J Biomech, 44, 12, 2250-2258 (2011)
[18] Montecinos, G. I.; Müller, L. O.; Toro, E. F., Hyperbolic reformulation of a 1D viscoelastic blood flow model and ADER finite volume schemes, J Comput Phys, 266, 101-123 (2014) · Zbl 1323.92065
[19] Müller, L. O.; Toro, E. F., Well-balanced high-order solver for blood flow in networks of vessels with variable properties, Int J Numer Methods Biomed Eng, 29, 12, 1388-1411 (2013)
[20] Müller, L. O.; Blanco, P. J., A high order approximation of hyperbolic conservation laws in networks: Application to one-dimensional blood flow, J Comput Phys, 300, 423-437 (2015) · Zbl 1349.76945
[21] Toro, E. F.; Millington, R. C.; Nejad, L. A.M., Towards very high-order godunov schemes, (Toro, E. F., Godunov methods: theory and applications. edited review (2001), Kluwer Academic/Plenum Publishers), 905-937 · Zbl 0989.65094
[22] Millington, R. C.; Titarev, V. A.; Toro, E. F., ADER: Arbitrary-order non-oscillatory advection schemes, (Freistühler, H.; Warnecke, G., Hyperbolic problems: theory, numerics, applications. Hyperbolic problems: theory, numerics, applications, ISNM international series of numerical mathematics, vol. 141 (2001), Birkhäuser Basel), 723-732
[23] Toro, E. F.; Titarev, V. A., Solution of the generalised Riemann problem for advection-reaction equations, Proc R Soc London A, 458, 271-281 (2002) · Zbl 1019.35061
[24] Titarev, V. A.; Toro, E. F., ADER: Arbitrary high order Godunov approach, J Sci Comput, 17, 609-618 (2002) · Zbl 1024.76028
[25] Toro, E. F.; Titarev, V. A., Derivative Riemann solvers for systems of conservation laws and ADER methods, J Comput Phys, 212, 1, 150-165 (2006) · Zbl 1087.65590
[26] Harten, A.; Osher, S., Uniformly high-order accurate nonoscillatory schemes. I, SIAM J Numer Anal, 24, 2, 279-309 (1987) · Zbl 0627.65102
[27] Harten, A.; Engquist, B.; Osher, S.; Chakravarthy, S. R., Uniformly high order accuracy essentially non-oscillatory schemes III, J Comput Phys, 71, 231-303 (1987) · Zbl 0652.65067
[28] Castro, C. E.; Toro, E. F., Solvers for the high-order Riemann problem for hyperbolic balance laws, J Comput Phys, 227, 2481-2513 (2008) · Zbl 1148.65066
[29] Montecinos, G.; Castro, C. E.; Dumbser, M.; Toro, E. F., Comparison of solvers for the generalized Riemann problem for hyperbolic systems with source terms, J Comput Phys, 231, 6472-6494 (2012) · Zbl 1284.35268
[30] Dumbser, M.; Enaux, C.; Toro, E. F., Finite volume schemes of very high order of accuracy for stiff hyperbolic balance laws, J Comput Phys, 227, 8, 3971-4001 (2008) · Zbl 1142.65070
[31] Balsara, D. S.; Rumpf, T.; Dumbser, M.; Munz, C. D., Efficient, high accuracy ADER-WENO schemes for hydrodynamics and divergence-free magnetohydrodynamics, J Comput Phys, 228, 7, 2480-2516 (2009) · Zbl 1275.76169
[32] Dumbser, M.; Zanotti, O.; Hidalgo, A.; Balsara, D. S., ADER-WENO finite volume schemes with space-time adaptive mesh refinement, Commun Comput Phys, 248, 257-286 (2013) · Zbl 1349.76325
[33] Boscheri, W.; Balsara, D. S.; Dumbser, M., Lagrangian ADER-WENO finite volume schemes on unstructured triangular meshes based on genuinely multidimensional HLL Riemann solvers, J Comput Phys, 267, 112-138 (2014) · Zbl 1349.76309
[34] Montecinos, G. I.; Müller, L. O.; Toro, E. F., Hyperbolic reformulation of a 1D viscoelastic blood flow model and ADER finite volume schemes (2014), Isaac Newton Institute for Mathematical Sciences, Preprint NI14014-NPA · Zbl 1323.92065
[35] Toro, E. F.; Montecinos, G. I., Implicit, semi-analytical solution of the generalized Riemann problem for stiff hyperbolic balance laws, J Comput Phys, 303, 146-172 (2015) · Zbl 1349.76399
[36] Montecinos, G. I.; Balsara, D. S., A cell-centered polynomial basis for efficient Galerkin predictors in the context of ADER finite volume schemes. The one-dimensional case, Comput & Fluids, 156, 220-238 (2017), Ninth International Conference on Computational Fluid Dynamics (ICCFD9) · Zbl 1390.76496
[37] Müller, L. O.; Toro, E. F., A global multiscale mathematical model for the human circulation with emphasis on the venous system, Int J Numer Methods Biomed Eng, In press, 681-725 (2014)
[38] Montecinos, G. I.; Balsara, D. S., A simplified Cauchy-kowalewskaya procedure for the local implicit solution of generalized Riemann problems of hyperbolic balance laws, Comput & Fluids, 202, Article 104490 pp. (2020) · Zbl 1519.76183
[39] Godunov, S. K., A finite difference method for the computation of discontinuous solutions of the equations of fluid dynamics, Mat Sb, 47, 357-393 (1959)
[40] Fatemi, E.; Jerome, J.; Osher, S., Solution of the hydrodynamic device model using high-order nonoscillatory shock capturing algorithms, IEEE Trans Comput-Aided Des Integr Circuits Syst, 10, 2, 232-244 (1991)
[41] Shu, C.-W., Numerical experiments on the accuracy of ENO and modified ENO schemes, J Sci Comput, 5, 127-149 (1990) · Zbl 0732.65085
[42] Rogerson, A. M.; Meiburg, F., A numerical study of the convergence properties of ENO schemes, vol. 5, 151-167 (1990) · Zbl 0732.65086
[43] Liu, X. D.; Osher, S.; Chan, T., Weighted essentially non-oscillatory schemes, J Comput Phys, 115, 1, 200-212 (1994) · Zbl 0811.65076
[44] Jiang, G. S.; Shu, C. W., Efficient implementation of weighted ENO schemes, J Comput Phys, 126, 202-228 (1996) · Zbl 0877.65065
[45] Santacà, A., High-order ader schemes for hyperbolic equations: selected topics (2017), Department of Civil and Environmental Engineering, University of Trento, Italy
[46] Dumbser, M.; Toro, E. F., On universal Osher-type schemes for general nonlinear hyperbolic conservation laws, Commun Comput Phys, 10, 3, 635-671 (2011) · Zbl 1373.76125
[47] Toro, E. F.; Siviglia, A., Flow in collapsible tubes with discontinuous mechanical properties: mathematical model and exact solutions, Commun Comput Phys, 13, 2, 361-385 (2013) · Zbl 1373.76362
[48] Ghitti, B.; Berthon, C.; Le, M. H.; Toro, E. F., A fully well-balanced scheme for the 1D blood flow equations with friction source term, J Comput Phys, 421, Article 109750 pp. (2020) · Zbl 07508369
[49] Toro, E. F.; Castro, C. E., The derivative Riemann problem for the Baer-Nunziato equations, (Benzoni-Gavage, H.; Serre, G., Hyperbolic problems: theory, numerics and applications. Vol. 1 (2008), Springer), 1045-1052 · Zbl 1372.35184
[50] Toro, E., The ADER path to high-order Godunov methods, (Demidenko, G. V.; Romenski, E.; Toro, E.; Dumbser, M., Continuum mechanics, applied mathematics and scientific computing: Godunov’s legacy: a liber amicorum to professor Godunov (2020), Springer International Publishing: Springer International Publishing Cham), 359-366
[51] Dumbser, M.; Toro, E. F., A simple extension of the osher Riemann solver to non-conservative hyperbolic systems, J Sci Comput, 48, 70-88 (2010) · Zbl 1220.65110
[52] Dumbser, M.; Käser, M.; Titarev, V. A.; Toro, E. F., Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems, J Comput Phys, 226, 8, 204-243 (2007) · Zbl 1124.65074
[53] Toro, E. F., Riemann solvers and numerical methods for fluid dynamics: a practical introduction, 724 (2009), Springer-Verlag, ISBN 978-3-540-25202-3 · Zbl 1227.76006
[54] Toro, E. F., Riemann solvers with evolved initial conditions, Internat J Numer Methods Fluids, 52, 433-453 (2006) · Zbl 1108.65091
[55] Matthys, K. S.; Alastruey, J.; Peiró, J.; Khir, A. W.; Segers, P.; Verdonck, P. R., Pulse wave propagation in a model human arterial network: Assessment of 1-D numerical simulations against in vitro measurements, J Biomech, 40, 3476-3486 (2007)
[56] Boileau, E.; Nithiarasu, P.; Blanco, P. J.; Müller, L. O.; Fossan, F. E.; Hellevik, L. R., A benchmark study of numerical schemes for one-dimensional arterial blood flow modelling, Int J Numer Methods Biomed Eng, 31, 10 (2015)
[57] Müller, L.; Blanco, P.; Watanabe, S.; Feijóo, R., A high-order local time stepping finite volume solver for one-dimensional blood flow simulations: Application to the ADAN model, Int J Numer Methods Biomed Eng, 32, n/a-n/a (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.