×

A Roe type energy balanced solver for 1D arterial blood flow and transport. (English) Zbl 1390.76941

Summary: The approximate solver presented in this work is based on the upwind discretization of the source terms and a genuinely Roe solver for the one-dimensional blood flow equations in arteries. This augmented solver involves the presence of the source terms, ensuring convergence to the exact solution by including an extra wave associated to the change in the material properties and the friction term. The resulting numerical scheme is energy-balanced, that is, ensures equilibrium in rest conditions and is able to ensure numerically a constant level of energy in steady cases with velocity. The resulting numerical solver allows simulating directly mass transport without creating non-physical oscillations. The numerical scheme is assessed using steady and unsteady problems with exact solutions and is compared with models of the systemic arterial tree published in literature.

MSC:

76Z05 Physiological flows
76M12 Finite volume methods applied to problems in fluid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
92C35 Physiological flow
Full Text: DOI

References:

[1] Anliker, M.; Rockwell, R. L.; Odgen, E., Nonlinear analysis of flow pulses and shock waves in arteries, Z Ang Math Phys, 22, 217-246, (1971)
[2] Pedley, T. J., The fluid mechanics of large blood vessels, (1980), Cambridge University Press Cambridge · Zbl 0449.76100
[3] Brook, B.; Falle, S.; Pedley, T., Numerical solution for unsteady gravity-driven flows in collapsible tubes: evolution and roll-wave instability of a steady state, J Fluid Mech, 396, 223-256, (1999) · Zbl 0971.76052
[4] Köppl, T.; Wohlmuth1, B.; Helmig, R., Reduced one-dimensional modelling and numerical simulation for mass transport in fluids, Int J Numer Methods Fluids, 72, 135-156, (2013) · Zbl 1455.76216
[5] Delestre, O.; Lagrée, P., A well-balanced finite volume scheme for blood flow simulation, Int J Numer Methods Fluids, 72, 177-205, (2013) · Zbl 1455.76215
[6] Formaggia, L.; Lamponi, D.; Quarteroni, A., One-dimensional models for blood flow in arteries, J Eng Math, 47, 251-276, (2003) · Zbl 1070.76059
[7] Sherwin, S.; Formaggia, L.; Peiró, J.; Franke, V., Computational modelling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system, Int J Numer Methods Fluids, 43, 673-700, (2003) · Zbl 1032.76729
[8] Formaggia, L.; Lamponi, D.; Tuveri, M.; Veneziani, A., Numerical modeling of 1D arterial networks coupled with a lumped parameters description of the heart, Comput Method Biomec, 9, 273-288, (2006)
[9] Kolachalama, V.; Bressloff, N.; Nair, P.; Shearman, C., Predictive hemodynamics in a one dimensional human carotid artery bifurcation, IEEE Trans Biomed Eng, 54, 802-812, (2007)
[10] Formaggia, L.; Quarteroni, A.; Vergara, C., On the physical consistency between three-dimensional and one-dimensional models in haemodynamics, J Comput Phys, 244, 97-112, (2013) · Zbl 1377.76042
[11] Xiu, D.; Sherwin, S., Parametric uncertainty analysis of pulse wave propagation in a model of a human arterial network, J Comput Phys, 226, 1385-1407, (2007) · Zbl 1121.92023
[12] Mynard, J.; Nithiarasu, P., A 1D arterial blood flow model incorporating ventricular pressure, aortic valve and regional coronary flow using the locally conservative Galerkin (lcg) method, Commun Numer Methods Eng, 24, 367-417, (2008) · Zbl 1137.92009
[13] Marchandise, E.; Willemet, M.; Lacroix, V., A numerical hemodynamic tool for predictive vascular surgery, Med Eng Phys, 31, 131-144, (2009)
[14] Alastruey, J.; Khir, A.; Matthys, K.; Segers, P.; Sherwin, S. J.; Verdonck, P. R., Pulse wave propagation in a model human arterial network: assessment of 1-D visco-elastic simulations against in vitro measurements, J Biomech, 44, 2250-2258, (2011)
[15] Rosatti, G.; Murillo, J.; Fraccarollo, L., Generalized roe schemes for 1D two-phase, free-surface flows over a mobile bed, J Comput Phys, 227, 10058-10077, (2008) · Zbl 1218.76033
[16] Toro, E. F.; Siviglia, A., Flow in collapsible tubes with discontinuous mechanical properties: mathematical model and exact solutions, Commun Comput Phys, 13, 361-385, (2012) · Zbl 1373.76362
[17] Toro, E. F.; Siviglia, A., Simplified blood flow model with discontinuous vessel properties: analysis and exact solutions, (Ambrosi, D.; Quarteroni, A.; Rozza, G., Modelling physiological flows series: modelling, simulation and applications, (2012), Springer-Verlag Milan, Dordrecht, Heidelberg, London, New York)
[18] Müller, L. O.; Montecinos, G. I.; Toro, E. F., Some issues in modelling venous haemodynamics, (Vázquez-Cendón, M. E.; Hidalgo, A.; García-Navarro, P.; Cea, L., Numerical methods for hyperbolic equations: theory and applications. An international conference to honour Professor E.F. Toro, (2013), CRC Press, Taylor & Francis Group Boca Raton, London, New York, Leiden) · Zbl 1314.65007
[19] Hou, T.; LeFloch, P., Why nonconservative schemes converge to wrong solutions: error analysis, Math Comp, 62, 497-530, (1994) · Zbl 0809.65102
[20] Alcrudo, F.; Benkhaldoun, F., Exact solutions to the Riemann problem of the shallow water equations with a bottom step, Comput Fluids, 30, 643-671, (2001) · Zbl 1048.76008
[21] Chinnayya, A.; LeRoux, N. S.A.-Y., A well-balanced numerical scheme for the approximation of the shallow water equations with topography: the resonance phenomenon, Int J Finite, 1, 1-33, (2004) · Zbl 1490.65167
[22] Bernetti, R.; Titarev, V.; Toro, E., Exact solution of the Riemann problem for the shallow water equations with discontinuous bottom geometry, J Comput Phys, 227, 3212-3243, (2008) · Zbl 1132.76027
[23] Rosatti, G.; Begnudelli, L., The Riemann problem for the one-dimensional, free-surface shallow water equations with a bed step: theoretical analysis and numerical simulations, J Comput Phys, 229, 760-787, (2010) · Zbl 1253.76014
[24] LeFloch, P.; Thanh, M., A Godunov-type method for the shallow water equations with discontinuous topography in the resonant regime, J Comput Phys, 230, 7631-7660, (2011) · Zbl 1453.35150
[25] Bermudez, A.; Vázquez-Cendón, M. E., Upwind methods for hyperbolic conservation laws with source terms, Comput Fluids, 23, 1049-1071, (1994) · Zbl 0816.76052
[26] Greenberg, J.; Leroux, A., A well-balanced scheme for the numerical processing of source terms in hyperbolic equations, SIAM J Numer Anal, 33, 1-16, (1996) · Zbl 0876.65064
[27] LeVeque, R. J., Balancing source terms and flux gradients in high-resolution Godunov methods: the quasi-steady wave-propagation algorithm, J Comput Phys, 146, 346-365, (1998) · Zbl 0931.76059
[28] Zhou, J.; Causon, D.; Mingham, C.; Ingram, D., The surface gradient method for the treatment of source terms in the shallow-water equations, J Comput Phys, 168, 1-25, (2001) · Zbl 1074.86500
[29] Liang, Q.; Borthwick, A., Adaptive quadtree simulation of shallow flows with wet-dry fronts over complex topography, Comput Fluids, 38, 221-234, (2009) · Zbl 1237.76017
[30] Audusse, E.; Bouchut, F.; Bristeau, M. O.; Klein, Rupert; Perthame, B., A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows, SIAM J Sci Comput, 25, 2050-2065, (2004) · Zbl 1133.65308
[31] Murillo, J.; García-Navarro, P., Weak solutions for partial differential equations with source terms: application to the shallow water equations, J Comput Phys, 229, 4327-4368, (2010) · Zbl 1334.35014
[32] Murillo, J.; García-Navarro, P., Augmented versions of the HLL and HLLC Riemann solvers including source terms in one and two dimensions for shallow flow applications, J Comput Phys, 231, 6861-6906, (2012) · Zbl 1284.35118
[33] Murillo, J.; Latorre, B.; García-Navarro, P., A Riemann solver for unsteady computation of 2D shallow flows with variable density, J Comput Phys, 231, 4775-4807, (2012) · Zbl 1245.76106
[34] Murillo, J.; García-Navarro, P., Energy balance numerical schemes for shallow water equations with discontinuous topography, J Comput Phys, 236, 119-142, (2013)
[35] Murillo, J.; García-Navarro, P., Accurate numerical modeling of 1D flow in channels with arbitrary shape. application of the energy balanced property, J Comput Phys, 260, 222-248, (2014) · Zbl 1349.76032
[36] Murillo, J.; García-Navarro, P.; Burguete, J., Conservative numerical simulation of multicomponent transport in two-dimensional unsteady shallow water flow, J Comput Phys, 228, 5539-5573, (2009) · Zbl 1280.76042
[37] Murillo, J.; García-Navarro, P., Improved Riemann solvers for complex transport in two-dimensional unsteady shallow flow, J Comput Phys, 230, 7202-7239, (2011) · Zbl 1408.76083
[38] Müller, L. O.; Parés, C.; Toro, C. E.F., Well-balanced high-order numerical schemes for one-dimensional blood flow in vessels with varying mechanical properties, J Comput Phys, 242, 53-85, (2013) · Zbl 1323.92066
[39] Müller, L. O.; Toro, E. F., Well-balanced high-order solver for blood flow in networks of vessels with variable properties, Int J Numer Method Biomed Eng, 29, 1388-1411, (2013)
[40] Quarteroni, A.; Formaggia, L., Mathematical modelling and numerical simulation of the cardiovascular system, (Ayache (Guest), N.; Ciarlet, P. G.; Lions, J. L., Modelling of living systems handbook of numerical analysis, (2003), Elsevier Science Amsterdam)
[41] Godunov, S., A finite difference method for the computation of discontinuous solutions of the equations of fluid dynamics, Mat Sb, 47, 357-393, (1959)
[42] Olufsen, M. S., Structured tree outflow condition for blood flow in larger systemic arteries, Am J Phys, 276, 257-268, (1999)
[43] Alastruey, J.; Parker, K.; Peiró, J.; Sherwin, S., Lumped parameter outflow models for 1-d blood flow simulations: effect on pulse waves and parameter estimation, Commun Comput Phys, 4, 317-336, (2008) · Zbl 1364.76248
[44] Reymond, P.; Bohraus, Y.; Perren, F.; Lazeyras, F.; Stergiopulos, N., Validation of a patient-specific one-dimensional model of the systemic arterial tree, Am J Physiol Heart Circ Physiol, 301, 1173-1182, (2011)
[45] Roe, P. L., Approximate Riemann solvers, parameter vectors, and difference schemes, J Comput Phys, 50, 235-269, (1983)
[46] Leveque, R., Finite volume methods for hyperbolic problem, (2002), Cambridge University Press New York · Zbl 1010.65040
[47] Xiu, D.; Sherwin, J., Parametric uncertainty analysis of pulse wave propagation in a model of a human arterial network, J Comput Phys, 226, 1385-1407, (2007) · Zbl 1121.92023
[48] Navas-Montilla, A.; Murillo, J., Energy balanced numerical schemes with very high order. the augmented roe flux ADER scheme. application to the shallow water equations, J Comput Phys, 290, 188-218, (2015) · Zbl 1349.76372
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.