×

Low-Shapiro hydrostatic reconstruction technique for blood flow simulation in large arteries with varying geometrical and mechanical properties. (English) Zbl 1378.76151

Summary: The purpose of this work is to construct a simple, efficient and accurate well-balanced numerical scheme for one-dimensional (1D) blood flow in large arteries with varying geometrical and mechanical properties. As the steady states at rest are not relevant for blood flow, we construct two well-balanced hydrostatic reconstruction techniques designed to preserve low-Shapiro number steady states that may occur in large network simulations. The Shapiro number \(S_h = u / c\) is the equivalent of the Froude number for shallow water equations and the Mach number for compressible Euler equations. The first is the low-Shapiro hydrostatic reconstruction (HR-LS), which is a simple and efficient method, inspired from the hydrostatic reconstruction technique (HR). The second is the subsonic hydrostatic reconstruction (HR-S), adapted here to blood flow and designed to exactly preserve all subcritical steady states. We systematically compare HR, HR-LS and HR-S in a series of single artery and arterial network numerical tests designed to evaluate their well-balanced and wave-capturing properties. The results indicate that HR is not adapted to compute blood flow in large arteries as it is unable to capture wave reflections and transmissions when large variations of the arteries’ geometrical and mechanical properties are considered. On the contrary, HR-S is exactly well-balanced and is the most accurate hydrostatic reconstruction technique. However, HR-LS is able to compute low-Shapiro number steady states as well as wave reflections and transmissions with satisfying accuracy and is simpler and computationally less expensive than HR-S. We therefore recommend using HR-LS for 1D blood flow simulations in large arterial network simulations.

MSC:

76Z05 Physiological flows
92C35 Physiological flow
76M12 Finite volume methods applied to problems in fluid mechanics

Software:

SWASHES

References:

[1] Euler, L.: Principia pro motu sanguinis per arterias determinando. Opera posthuma Mathematica et physica anno, 814-823 (1844)
[2] Pedley, T.: The fluid mechanics of large blood vessels. (1980) · Zbl 0449.76100 · doi:10.1017/CBO9780511896996
[3] Alastruey, J.; Khir, A. W.; Matthys, K. S.; Segers, P.; Sherwin, S. J.; Verdonck, P. R.; Parker, K. H.; Peiró, J.: Pulse wave propagation in a model human arterial network: assessment of 1-D visco-elastic simulations against in vitro measurements. J. biomech. 44, No. 12, 2250-2258 (2011)
[4] Wang, X.; Fullana, J. -M.; Lagrée, P. -Y.: Verification and comparison of four numerical schemes for a 1D viscoelastic blood flow model. Comput. methods biomech. Biomed. eng. 18, No. 15, 1704-1725 (2015)
[5] Müller, L. O.; Toro, E. F.: A global multiscale mathematical model for the human circulation with emphasis on the venous system. Int. J. Numer. methods biomed. Eng. 30, No. 7, 681-725 (2014)
[6] Boileau, E.; Nithiarasu, P.; Blanco, P. J.; Müller, L. O.; Fossan, F. E.; Hellevik, L. R.; Donders, W. P.; Huberts, W.; Willemet, M.; Alastruey, J.: A benchmark study of numerical schemes for one-dimensional arterial blood flow modelling. Int. J. Numer. methods biomed. Eng. 31, No. 10 (2015)
[7] Alastruey, J.; Parker, K.; Peiró, J.; Sherwin, S.: Analysing the pattern of pulse waves in arterial networks: a time-domain study. J. eng. Math. 64, No. 4, 331-351 (2009) · Zbl 1168.76388 · doi:10.1007/s10665-009-9275-1
[8] Politi, M. T.; Ghigo, A.; Fernández, J. M.; Khelifa, I.; Gaudric, J.; Fullana, J. M.; Lagrée, P. -Y.: The dicrotic notch analyzed by a numerical model. Comput. biol. Med. 72, 54-64 (2016)
[9] Lagrée, P. -Y.: An inverse technique to deduce the elasticity of a large artery. Eur. phys. J. appl. Phys. 9, No. 02, 153-163 (2000)
[10] Martin, V.; Clément, F.; Decoene, A.; Gerbeau, J. -F.: Parameter identification for a one-dimensional blood flow model. ESAIM: Proceedings, vol. 14 14, 174-200 (2005) · Zbl 1070.92015 · doi:10.1051/proc:2005014
[11] Dumas, L.; Boutouyrie, P.; Bozec, E.: An optimal reconstruction of the human arterial tree from Doppler echotracking measurements. Proceedings of the 14th annual conference companion on genetic and evolutionary computation, 517-522 (2012)
[12] Delestre, O.; Lagrée, P. -Y.: A well-balanced finite volume scheme for blood flow simulation. Int. J. Numer. methods fluids 72, No. 2, 177-205 (2012)
[13] Roe, P.: Upwind differencing schemes for hyperbolic conservation laws with source terms. Nonlinear hyperbolic problems, 41-51 (1987) · Zbl 0626.65086
[14] Bermúdez, A.; Vázquez, M. E.: Upwind methods for hyperbolic conservation laws with source terms. Comput. fluids 23, No. 8, 1049-1071 (1994) · Zbl 0816.76052 · doi:10.1016/0045-7930(94)90004-3
[15] Gosse, L.; Leroux, A. -Y.: Un schéma-équilibre adapté aux lois de conservation scalaires non-homogènes. C. R. Math. acad. Sci. 323, No. 5, 543-546 (1996) · Zbl 0858.65091
[16] Greenberg, J. M.; Leroux, A. -Y.: A well-balanced scheme for the numerical processing of source terms in hyperbolic equations. SIAM J. Numer. anal. 33, No. 1, 1-16 (1996) · Zbl 0876.65064 · doi:10.1137/0733001
[17] Toro, E. F.: Shock-capturing methods for free-surface shallow flows. (2001) · Zbl 0996.76003
[18] Čanić, S.: Blood flow through compliant vessels after endovascular repair: wall deformations induced by the discontinuous wall properties. Comput. vis. Sci. 4, No. 3, 147-155 (2002) · Zbl 0987.92011 · doi:10.1007/s007910100066
[19] Sherwin, S.; Formaggia, L.; Peiro, J.; Franke, V.: Computational modelling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system. Int. J. Numer. methods fluids 43, No. 6-7, 673-700 (2003) · Zbl 1032.76729 · doi:10.1002/fld.543
[20] Toro, E. F.; Siviglia, A.: Flow in collapsible tubes with discontinuous mechanical properties: mathematical model and exact solutions. Commun. comput. Phys. 13, No. 02, 361-385 (2013) · Zbl 1373.76362
[21] Parés, C.: Numerical methods for nonconservative hyperbolic systems: a theoretical framework. SIAM J. Numer. anal. 44, No. 1, 300-321 (2006) · Zbl 1130.65089 · doi:10.1137/050628052
[22] Müller, L. O.; Parés, C.; Toro, E. F.: Well-balanced high-order numerical schemes for one-dimensional blood flow in vessels with varying mechanical properties. J. comput. Phys. 242, 53-85 (2013) · Zbl 1323.92066 · doi:10.1016/j.jcp.2013.01.050
[23] Murillo, J.; García-Navarro, P.: A roe type energy balanced solver for 1D arterial blood flow and transport. Comput. fluids 117, 149-167 (2015) · Zbl 1390.76941
[24] Audusse, E.; Bouchut, F.; Bristeau, M. -O.; Klein, R.; Perthame, B.: A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. comput. 25, No. 6, 2050-2065 (2004) · Zbl 1133.65308 · doi:10.1137/S1064827503431090
[25] Delestre, O.; Ghigo, A. R.; Fullana, J. -M.; Lagrée, P. -Y.: A shallow water with variable pressure model for blood flow simulation. Netw. heterog. Media 11, No. 1, 69-87 (2016) · Zbl 1352.35200 · doi:10.3934/nhm.2016.11.69
[26] Bouchut, F.; De Luna, T. Morales: A subsonic-well-balanced reconstruction scheme for shallow water flows. SIAM J. Numer. anal. 48, No. 5, 1733-1758 (2010) · Zbl 1369.76007
[27] Lambert, J. W.: On the nonlinearities of fluid flow in nonrigid tubes. J. franklin inst. 266, No. 2, 83-102 (1958)
[28] Barnard, A.; Hunt, W.; Timlake, W.; Varley, E.: A theory of fluid flow in compliant tubes. Biophys. J. 6, No. 6, 717 (1966)
[29] Hughes, T. J.; Lubliner, J.: On the one-dimensional theory of blood flow in the larger vessels. Math. biosci. 18, No. 1, 161-170 (1973) · Zbl 0262.92004 · doi:10.1016/0025-5564(73)90027-8
[30] Pedley, T. J.; Brook, B. S.; Seymour, R. S.: Blood pressure and flow rate in the giraffe jugular vein. Philos. trans. R. soc. Lond. B, biol. Sci. 351, No. 1342, 855-866 (1996)
[31] Formaggia, L.; Lamponi, D.; Quarteroni, A.: One-dimensional models for blood flow in arteries. J. eng. Math. 47, No. 3-4, 251-276 (2003) · Zbl 1070.76059 · doi:10.1023/B:ENGI.0000007980.01347.29
[32] Moens, A. I.: Die pulskurve. (1878)
[33] Korteweg, D.: Über die fortpflanzungsgeschwindigkeit des schalles in elastischen röhren. Ann. phys. 241, No. 12, 525-542 (1878) · JFM 10.0683.01
[34] Shapiro, A. H.: Steady flow in collapsible tubes. J. biomech. Eng. 99, No. 3, 126-147 (1977)
[35] Liu, T. -P.: Nonlinear resonance for quasilinear hyperbolic equation. J. math. Phys. 28, No. 11, 2593-2602 (1987) · Zbl 0662.35068 · doi:10.1063/1.527751
[36] Isaacson, E.; Temple, B.: Nonlinear resonance in systems of conservation laws. SIAM J. Appl. math. 52, No. 5, 1260-1278 (1992) · Zbl 0794.35100 · doi:10.1137/0152073
[37] Leveque, R. J.: Finite volume methods for hyperbolic problems, vol. 31. (2002) · Zbl 1010.65040 · doi:10.1017/CBO9780511791253
[38] Han, E.; Hantke, M.; Warnecke, G.: Exact Riemann solutions to compressible Euler equations in ducts with discontinuous cross-section. J. hyperbolic differ. Equ. 9, No. 03, 403-449 (2012) · Zbl 1263.35178 · doi:10.1142/S0219891612500130
[39] Gosse, L.: Computing qualitatively correct approximations of balance laws. SIMAI Springer series 2 (2013) · Zbl 1272.65065 · doi:10.1007/978-88-470-2892-0
[40] Müller, L. O.; Blanco, P. J.: A high order approximation of hyperbolic conservation laws in networks: application to one-dimensional blood flow. J. comput. Phys. 300, 423-437 (2015) · Zbl 1349.76945 · doi:10.1016/j.jcp.2015.07.056
[41] Audebert, C.; Bucur, P.; Bekheit, M.; Vibert, E.; Vignon-Clementel, I. E.; Gerbeau, J. -F.: Kinetic scheme for arterial and venous blood flow, and application to partial hepatectomy modeling. Comput. methods appl. Mech. eng. (2016)
[42] Bouchut, F.: Construction of BGK models with a family of kinetic entropies for a given system of conservation laws. J. stat. Phys. 95, No. 1-2, 113-170 (1999) · Zbl 0957.82028 · doi:10.1023/A:1004525427365
[43] Perthame, B.; Simeoni, C.: A kinetic scheme for the Saint-Venant system with a source term. Calcolo 38, No. 4, 201-231 (2001) · Zbl 1008.65066 · doi:10.1007/s10092-001-8181-3
[44] Audusse, E.; Bristeau, M. -O.: A well-balanced positivity preserving second-order scheme for shallow water flows on unstructured meshes. J. comput. Phys. 206, No. 1, 311-333 (2005) · Zbl 1087.76072 · doi:10.1016/j.jcp.2004.12.016
[45] Bouchut, F.: Nonlinear stability of finite volume methods for hyperbolic conservation laws: and well-balanced schemes for sources. (2004) · Zbl 1086.65091
[46] Andrianov, N.: Performance of numerical methods on the non-unique solution to the Riemann problem for the shallow water equations. Int. J. Numer. methods fluids 47, No. 8-9, 825-831 (2005) · Zbl 1134.76402 · doi:10.1002/fld.846
[47] Courant, R.; Friedrichs, K.; Lewy, H.: On the partial difference equations of mathematical physics. IBM J. Res. dev. 11, No. 2, 215-234 (1967) · Zbl 0145.40402 · doi:10.1147/rd.112.0215
[48] M.-O. Bristeau, B. Coussin, Boundary conditions for the shallow water equations solved by kinetic schemes.
[49] Alastruey, J.; Parker, K.; Peiró, J.; Sherwin, S.: Lumped parameter outflow models for 1-D blood flow simulations: effect on pulse waves and parameter estimation. Commun. comput. Phys. 4, No. 2, 317-336 (2008) · Zbl 1364.76248
[50] Sherwin, S.; Franke, V.; Peiró, J.; Parker, K.: One-dimensional modelling of a vascular network in space-time variables. J. eng. Math. 47, No. 3-4, 217-250 (2003) · Zbl 1200.76230 · doi:10.1023/B:ENGI.0000007979.32871.e2
[51] Raines, J. K.; Jaffrin, M. Y.; Shapiro, A. H.: A computer simulation of arterial dynamics in the human leg. J. biomech. 7, No. 1, 77-91 (1974)
[52] Cavallini, N.; Coscia, V.: One-dimensional modelling of venous pathologies: finite volume and WENO schemes. Advances in mathematical fluid mechanics, 147-170 (2010) · Zbl 1374.76122
[53] Castro, M. J.; Milanés, A. Pardo; Parés, C.: Well-balanced numerical schemes based on a generalized hydrostatic reconstruction technique. Math. models methods appl. Sci. 17, No. 12, 2055-2113 (2007) · Zbl 1137.76038 · doi:10.1142/S021820250700256X
[54] Noelle, S.; Xing, Y.; Shu, C. -W.: High-order well-balanced finite volume WENO schemes for shallow water equation with moving water. J. comput. Phys. 226, No. 1, 29-58 (2007) · Zbl 1120.76046 · doi:10.1016/j.jcp.2007.03.031
[55] Díaz, M. Castro; López-García, J. A.; Parés, C.: High order exactly well-balanced numerical methods for shallow water systems. J. comput. Phys. 246, 242-264 (2013) · Zbl 1349.76315 · doi:10.1016/j.jcp.2013.03.033
[56] Delestre, O.; Lucas, C.; Ksinant, P. -A.; Darboux, F.; Laguerre, C.; Vo, T. -N.; James, F.; Cordier, S.: SWASHES: a compilation of shallow water analytic solutions for hydraulic and environmental studies. Int. J. Numer. methods fluids 72, No. 3, 269-300 (2013)
[57] Wang, Z.; Li, G.; Delestre, O.: Well-balanced finite difference weighted essentially non-oscillatory schemes for the blood flow model. Int. J. Numer. methods fluids 82, No. 9, 607-622 (2016)
[58] Westerhof, N.; Noordergraaf, A.: Arterial viscoelasticity: a generalized model: effect on input impedance and wave travel in the systematic tree. J. biomech. 3, No. 3, 357-379 (1970)
[59] Ghigo, A.; Aboutaam, S.; Wang, X.; Lagrée, P. -Y.; Fullana, J. -M.: Numerical simulations of a bypass repair of an iliac artery obliteration. Comput. methods biomech. Biomed. eng. 18, No. sup1, 1944-1945 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.