×

A ‘well-balanced’ finite volume scheme for blood flow simulation. (English) Zbl 1455.76215

Summary: We are interested in simulating blood flow in arteries with a one-dimensional model. Thanks to recent developments in the analysis of hyperbolic system of conservation laws (in the Saint-Venant shallow water equations context) we will perform a simple finite volume scheme. We focus on conservation properties of this scheme, which were not previously considered. To emphasize the necessity of this scheme, we present how a too simple numerical scheme may induce spurious flows when the basic static shape of the radius changes. On the contrary, the proposed scheme is ‘well-balanced’: it preserves equilibria of \(Q=0\). Then examples of analytical or linearized solutions with and without viscous damping are presented to validate the calculations. The influence of abrupt change of basic radius is emphasized in the case of an aneurism.

MSC:

76Z05 Physiological flows
76M12 Finite volume methods applied to problems in fluid mechanics
65M08 Finite volume methods for initial value and initial-boundary value problems involving PDEs
92C35 Physiological flow

References:

[1] XiuD, SherwinSJ. Parametric uncertainty analysis of pulse wave propagation in a model of a human arterial network. Journal of Computational Physics2007; 226:1385-1407. · Zbl 1121.92023
[2] ParkerKH. A brief history of arterial wave mechanics. Medical & Biological Engineering & Computing Feb 2009; 47:111-118.
[3] LighthillJ. Waves in Fluids. Cambridge University Press: Cambridge, 1978. · Zbl 0375.76001
[4] PedleyTJ. The Fluid Mechanics of Large Blood Vessel. Cambridge Monographs on Mechanics, 1980. · Zbl 0449.76100
[5] Van SteenhovenAA, Van DongenMEH. Model studies of the aortic pressure rise just after valve closure. Journal of Fluid Mechanics1986; 166:93-113.
[6] ZagzouleM, Marc‐VergnesJP. A global mathematical model of the cerebral circulation in man. Journal of Biomechanics1986; 19(12):1015-1022.
[7] StergiopulosN, YoungDF, RoggeTR. Computer simulation of arterial flow with applications to arterial and aortic stenoses. Journal of Biomechanics1992; 25(12):1477-1488.
[8] OlufsenMS. Structured tree outflow condition for blood flow in larger systemic arteries. American Journal of Physiology - Heart and Circulatory Physiology1999; 276:257-268.
[9] LagréePY, RossiM. Etude de l’écoulement du sang dans les artères: effets nonlinéaires et dissipatifs. Comptes Rendus de l’Académie des Sciences, Paris1996:401-408. · Zbl 0923.76365
[10] LagréePY. An inverse technique to deduce the elasticity of a large artery. The European Physical Journal2000; 9:153-163.
[11] SherwinSJ, FormaggiaL, PeiróJ, FrankeV. Computational modelling of 1D blood flow with variable mechanical properties and its application to the simulation of wave propagation in the human arterial system. International Journal for Numerical Methods in Fluids2003; 43:673-700. DOI: 10.1002/fld.543. · Zbl 1032.76729
[12] FernándezMA, MilišićV, QuarteroniA. Analysis of a geometrical multiscale blood flow model based on the coupling of ODE’s and hyperbolic PDE’s. Technical Report 5127, INRIA, Feb 2004.
[13] WibmerM. One‐dimensional simulation of arterial blood flow with applications. PhD Thesis, eingereicht an der Technischen Universitat Wien, Fakultat fur Technische Naturwissenschaften und Informatik, Jan 2004.
[14] MartinV, ClémentF, DecoeneA, GerbeauJF. Parameter identification for a one‐dimensional blood flow model. In ESAIM: PROCEEDINGS, Vol. 14, GerbeauECJF (ed.) (ed), 2005; 174-200. DOI: 10.1051/proc:2005014. http://www.esaim‐proc.org/index.php?option=com_article&access=standard&Itemid=129&url=/articles/proc/abs/2005/01/martin/martin.html. · Zbl 1070.92015
[15] FormaggiaL, LamponiD, TuveriM, VenezianiA. Numerical modeling of 1D arterial networks coupled with a lumped parameters description of the heart. Computer Methods in Biomechanics and Biomedical Engineering2006; 9:273-288.
[16] CavalliniN, CaleffiV, CosciaV. Finite volume and WENO scheme in one‐dimensional vascular system modelling. Computers and Mathematics with Applications2008; 56:2382-2397. DOI: 10.1016/J.camwa.2008.05.039. · Zbl 1165.76364
[17] AlastrueyJ, ParkerKH, PeiróJ, SherwinSJ. Lumped parameter outflow models for 1D blood flow simulations: effect on pulse waves and parameter estimation. Communications in Computational Physics2008; 4:317-336. · Zbl 1364.76248
[18] CavalliniN, CosciaV. One‐dimensional modelling of venous pathologies: finite volume and WENO schemes. In Advances in Mathematical Fluid Mechanics, RannacherR (ed.), SequeiraA (ed.) (eds), Springer, Berlin Heidelberg, 2010; 147-170. (Available from: http://dx.doi.org/10.1007/978‐3‐642‐04068‐9_9). · Zbl 1374.76122 · doi:10.1007/978‐3‐642‐04068‐9_9
[19] WillemetM, LacroixV, MarchandiseE. Inlet boundary conditions for blood flow simulations in truncated arterial networks. Journal of Biomechanics2011; 44(5):897-903. DOI: 10.1016/j.jbiomech.2010.11.036. (Available from: http://www.sciencedirect.com/science/article/B6T82‐51V8Y64‐1/2/eb86e3d4873bd8ec019a622d0c33ca36).
[20] MarchandiseE, ChevaugeonN, RemacleJF. Spatial and spectral superconvergence of discontinuous Galerkin method for hyperbolic problems. Journal of Computational and Applied Mathematics2008; 215(2):484-494. DOI: 10.1016/j.cam.2006.03.061. (Available from: http://www.sciencedirect.com/science/article/B6TYH‐4MN3V8R‐3/2/0bb0cd0d831f13f6105135c1f6c77587). Proceedings of the Third International Conference on Advanced Computational Methods in Engineering (ACOMEN 2005). · Zbl 1138.65081
[21] FernándezMA, GerbeauJF, GrandmontC. A projection semi‐implicit scheme for the coupling of an elastic structure with an incompressible fluid. International Journal for Numerical Methods in Engineering2007; 69(4):794-821. DOI: 10.1002/nme.1792. · Zbl 1194.74393
[22] van deVosseF, deHartJ, vanOijenC, BessemsD. Finite‐element‐based computational methods for cardiovascular fluid‐structure interaction. Journal of Engineering Mathematics2003; 47:335-368. · Zbl 1057.74047
[23] SaitoM, IkenagaY, MatsukawaM, WatanabeY, AsadaT, LagréePY. One‐dimensional model for propagation of a pressure wave in a model of the human arterial network: comparison of theoretical and experimental. Journal of Biomechanical Engineering Dec 2011; 133:121005‐1-121005‐9. DOI: 10.1115/1.4005472.
[24] OlufsenMS, PeskinCS, KimWY, PedersenEM, NadimA, LarsenJ. Numerical simulation and experimental validation of blood flow in arteries with structured‐tree outflow conditions. Annals of Biomedical Engineering2000; 28:1281-1299.
[25] FullanaJM, ZaleskiS. A branched one‐dimensional model of vessel networks. Journal of Fluid Mechanics2009; 621:183-204. · Zbl 1171.76475
[26] PinderaMZ, DingH, AthavaleMM, ChenZ. Accuracy of 1D microvascular flow models in the limit of low Reynolds numbers. Microvascular Research2009; 77(3):273-280. DOI: 10.1016/j.mvr.2008.11.006. (Available from: http://www.sciencedirect.com/science/article/B6WN8‐4V59W3D‐1/2/34024497531a550ed28ec3a5aeefc401).
[27] deSaint VenantAJC. Théorie du mouvement non‐permanent des eaux, avec application aux crues des rivières et à l’introduction des marées dans leur lit. Comptes Rendus de l’Académie des Sciences1871; 73:147-154. · JFM 03.0482.04
[28] GoutalN, MaurelF. A finite volume solver for 1D shallow‐water equations applied to an actual river. International Journal for Numerical Methods in Fluids2002; 38:1-19. DOI: 10.1002/fld.201. · Zbl 1115.76355
[29] BurgueteJ, García‐NavarroP, MurilloJ. Friction term discretization and limitation to preserve stability and conservation in the 1D shallow‐water model: application to unsteady irrigation and river flow. International Journal for Numerical Methods in Fluids2008; 58(4):403-425. DOI: 10.1002/fld.1727. · Zbl 1391.76528
[30] DelestreO, CordierS, JamesF, DarbouxF. Simulation of rain‐water overland‐flow. Proceedings of the 12th International Conference on Hyperbolic Problems, University of Maryland, College Park (USA), 2008. E. Tadmor, J.‐G. Liu and A. Tzavaras (eds)., Proceedings of Symposia in Applied Mathematics 67, Amer. Math. Soc., 537-546, 2009. · Zbl 1407.86002
[31] DelestreO, JamesF. Simulation of rainfall events and overland flow. Proceedings of X International Conference Zaragoza‐Pau on Applied Mathematics and Statistics, Jaca, Spain, 2009. september 2008, Monografías Matemáticas García de Galdeano.
[32] TatardL, PlanchonO, WainwrightJ, NordG, Favis‐MortlockD, SilveraN, RibolziO, EstevesM, HuangCH. Measurement and modelling of high‐resolution flow‐velocity data under simulated rainfall on a low‐slope sandy soil. Journal of Hydrology Jan 2008; 348(1-2):1-12. DOI: 10.1016/j.jhydrol.2007.07.016.
[33] ValianiA, CaleffiV, ZanniA. Finite volume scheme for 2D shallow‐water equations. Application to Malpasset dam‐break. The 4^th CADAM Workshop, Zaragoza, 1999; 63-94.
[34] ValianiA, CaleffiV, ZanniA. Case study : Malpasset dam‐break simulation using a two‐dimensional finite volume methods. Journal of Hydraulic Engineering2002; 128(5):460-472.
[35] SampsonJ, EastonA, SinghM. Modelling the effect of proposed channel deepening on the tides in Port Phillip Bay, 2005. (Available from: http://hdl.handle.net/1959.3/2405).
[36] DutykhD. Modélisation mathématique des tsunamis. PhD Thesis, École normale supérieure de Cachan.
[37] PopinetS. Quadtree‐adaptative tsunami modelling. Ocean Dynamics May 2011; 61(9):1261-1285. DOI: 10.1007/s10236‐011‐0438‐z.
[38] BermudezA, VazquezME. Upwind methods for hyperbolic conservation laws with source terms. Computers & Fluids1994; 23(8):1049-1071. DOI: 10.1016/0045‐7930(94)90004‐3. (Available from: http://www.sciencedirect.com/science/article/B6V26‐47YMXJT‐16/2/4485b4adb616198b768daff172258660). · Zbl 0816.76052
[39] BermúdezA, DervieuxA, DesideriJA, VázquezME. Upwind schemes for the two‐dimensional shallow water equations with variable depth using unstructured meshes. Computer Methods in Applied Mechanics and Engineering1998; 155(1‐2):49-72. DOI: 10.1016/S0045‐7825(97)85625‐3. (Available from: http://www.sciencedirect.com/science/article/B6V29‐3WN739F‐4/2/3120ee07ea5c43b3318fbfb6c05d2dde). · Zbl 0961.76047
[40] LeVequeRJ. Balancing source terms and flux gradients in high‐resolution Godunov methods: the quasi‐steady wave‐propagation algorithm. Journal of Computational Physics1998; 146(1):346-365. DOI: 10.1006/1998.6058jcph. (Available from: http://www.sciencedirect.com/science/article/B6WHY‐45J58TW‐22 /2/72a8af8c9e23f63b0df9484475f7e2df). · Zbl 0931.76059
[41] JinS. A steady‐state capturing method for hyperbolic systems with geometrical source terms. M2AN2001; 35(4):631-645. DOI: 10.1051/m2an:2001130. (Available from: http://dx.doi.org/10.1051/m2an:2001130). · Zbl 1001.35083 · doi:10.1051/m2an:2001130
[42] GreenbergJM, LeRouxA. A well‐balanced scheme for the numerical processing of source terms in hyperbolic equation. SIAM Journal on Numerical Analysis1996; 33:1-16. · Zbl 0876.65064
[43] GosseL. A well‐balanced flux‐vector splitting scheme designed for hyperbolic systems of conservation laws with source terms. Computers & Mathematics with Applications2000; 39(9‐10):135-159. DOI: 10.1016/S0898‐1221(00)00093‐6. (Available from: http://www.sciencedirect.com/science/article/B6TYJ‐40NFTJN‐D/ 2/320458e48d7fbefdf910aaf251d7255c). · Zbl 0963.65090
[44] GallouëtT, HérardJM, SeguinN. Some approximate Godunov schemes to compute shallow‐water equations with topography. Computers & Fluids2003; 32:479-513. · Zbl 1084.76540
[45] KurganovA, LevyD. Central‐upwind schemes for the Saint‐Venant system. Mathematical Modelling and Numerical Analysis2002; 36:397-425. · Zbl 1137.65398
[46] PerthameB, SimeoniC. A kinetic scheme for the Saint‐Venant system with a source term. Calcolo2001; 38:201-231. DOI: 10.1007/s10092‐001‐8181‐3. (Available from: http://dx.doi.org/10.1007/s10092‐001‐8181‐3). · Zbl 1008.65066 · doi:10.1007/s10092‐001‐8181‐3
[47] AudusseE, BouchutF, BristeauMO, KleinR, PerthameB. A fast and stable well‐balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM Journal on Scientific Computing2004; 25(6):2050-2065. DOI: 10.1137/S1064827503431090. · Zbl 1133.65308
[48] BouchutF. Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws, and Well‐Balanced Schemes for Sources, Vol. 2/2004. Birkhäuser: Basel, 2004. DOI: 10.1007/b95203. · Zbl 1086.65091
[49] Vàzquez‐CendònME. Improved treatment of source terms in upwind schemes for the shallow water equations in channels with irregular geometry. Journal of Computational Physics1999; 148:497-526. · Zbl 0931.76055
[50] ChinnayyaA, LeRouxAY. A new General Riemann Solver for the Shallow Water equations, with friction and topography, 1999. (Available from: http://www.math.ntnu.no/conservation/1999/021.html), Preprint.
[51] Lukáčová‐Medvid’ováM, VlkZ. Well‐balanced finite volume evolution Galerkin methods for the shallow water equations with source terms. International Journal for Numerical Methods in Fluids2005; 47(10‐11):1165-1171. · Zbl 1064.76073
[52] Lukáčová‐Medvid’ováM, TeschkeU. Comparison study of some finite volume and finite element methods for the shallow water equations with bottom topography and friction terms. Journal of Applied Mathematics and Mechanics ZAMM2006; 86(11):874-891. DOI: 10.1002/zamm.200510280. · Zbl 1320.76083
[53] LeeSH, WrightNG. Simple and efficient solution of the shallow water equations with source terms. International Journal for Numerical Methods in Fluids2010; 63:313-340. DOI: 10.1002/fld.2071. · Zbl 1352.76016
[54] HouTY, LeFlochPG. Why nonconservative schemes converge to wrong solutions: error analysis. Mathematics of Computation Apr 1994; 62(206):497-530. · Zbl 0809.65102
[55] BerthonC, CoquelF. Nonlinear projection methods for multi‐entropies Navier-Stokes systems. Mathematics of Computation2007; 76:1163-1194. · Zbl 1110.76035
[56] CastroMJ, LeFlochPG, Luz Muñoz RuizM, ParésC. Why many theories of shock waves are necessary: convergence error in formally path‐consistent schemes. Journal of Computational Physics2008; 227(17):8107-8129. DOI: 10.1016/j.jcp.2008.05.012. (Available from: http://www.sciencedirect.com/science/article/B6WHY‐4SMNY18‐1/2/a96e0bdf121ac34604742fdc9165bd07). · Zbl 1176.76084
[57] LagréePY, LorthoisS.The RNS/PRANDTl equations and their link with other asymptotic descriptions. Application to the computation of the maximum value of the wall shear stress in a pipe. International Journal of Engineering Science2005; 43(3-4):352-378. · Zbl 1211.76033
[58] ZagzouleM, Khalid‐NaciriJ, MaussJ. Unsteady wall shear stress in a distensible tube. Journal of Biomechanics1991; 24(6):435-439.
[59] KunduPK, CohenIM, HuHH, Third Edition, Academic Press, 2004.
[60] KunduPK, CohenIM, Fourth Edition, Academic Press, Elsevier, The Boulevard, Langford Lane Kidlington: Oxford, OX5 1GB, UK, 2008.
[61] CastroMJ, PardoMA, ParésC. Well‐balanced numerical schemes based on a generalized hydrostatic reconstruction technique. Mathematical Models and Methods in Applied Sciences2007; 17(12):2065-2113. · Zbl 1137.76038
[62] NoelleS, XingY, ShuCW. High‐order well‐balanced finite volume WENO schemes for shallow water equation with moving water. Journal of Computational Physics2007; 226:29-58. DOI: 10.1016/j.jcp.2007.03.031. (Available from: http://www.sciencedirect.com/science/article/B6WHY‐4NG3TH4‐3/2/546ff3d247ae9db8ed41e3 de935ee892). · Zbl 1120.76046
[63] ThanhMD, Fazlul KarimM, IsmailAIM. Well‐balanced scheme for shallow water equations with arbitrary topography. International Journal of Dynamical Systems and Differential Equations2008; 1(3):196-204. · Zbl 1151.76022
[64] BouchutF, Morales de LunaT. A Subsonic‐Well‐Balanced Reconstruction Scheme for Shallow Water Flows. SIAM Journal on Numerical Analysis2010; 48:1733-1758. · Zbl 1369.76007
[65] FiedlerRF, RamirezJA. A numerical method for simulating discontinuous shallow flow over an infiltrating surface. International Journal for Numerical Methods in Fluids2000; 32:219-240. · Zbl 0965.76063
[66] BristeauMO, CoussinB. Boundary conditions for the shallow water equations solved by kinetic schemes. Technical Report 4282, INRIA, Oct 2001.
[67] LiangQ, MarcheF. Numerical resolution of well‐balanced shallow water equations with complex source terms. Advances in Water Resources2009; 32(6):873-884. DOI: 10.1016/j.advwatres.2009.02.010. (Available from: http://www.sciencedirect.com/science/article/B6VCF‐4VR9FHT‐3/2/5218868dcfded7d34380666f23000855).
[68] Mangeney‐CastelnauA, BouchutF, VilotteJP, LajeunesseE, AubertinA, PirulliM. On the use of Saint‐Venant equations to simulate the spreading of a granular mass. Journal of Geophysical Research2005; 110:1-17.
[69] MangeneyA, BouchutF, ThomasN, VilotteJP, BristeauMO. Numerical modeling of self‐channeling granular flow and of their levee‐channel deposits. Journal of Geophysical Research May 2007; 112(F2):1-21. DOI: 10.1029/2006JF000469.
[70] HartenA, LaxPD, van LeerB. On upstream differencing and Godunov‐type schemes for hyperbolic conservation laws. SIAM Review Jan 1983; 25(1):35-61. · Zbl 0565.65051
[71] MarcheF, BonnetonP, FabrieP, SeguinN. Evaluation of well‐balanced bore‐capturing schemes for 2D wetting and drying processes. International Journal for Numerical Methods in Fluids2007; 53:867-894. DOI: 10.1002/fld.1311. · Zbl 1229.76063
[72] MarcheF, BerthonC. A positive preserving high order VFRoe scheme for shallow water equations: A class of relaxation schemes. SIAM Journal on Scientific Computing Aug 2008; 30(5):2587-2612. (Available from: http://hal.archives‐ouvertes.fr/hal‐00370486/en/), 75M12, 35L65, 65M12. · Zbl 1358.76053
[73] AudusseE. Schémas cinétiques pour le système de Saint‐Venant. Master’s Thesis, Université Paris 6, 1999.
[74] AudusseE, BristeauMO. A well‐balanced positivity preserving “second‐order” scheme for shallow water flows on unstructured meshes. Journal of Computational Physics2005; 206:311-333. DOI: 10.1016/j.jcp.2004.12.016. · Zbl 1087.76072
[75] DelestreO. Simulation du ruissellement d’eau de pluie sur des surfaces agricoles/ rain water overland flow on agricultural fields simulation. PhD Thesis, Université d’Orléans (in French). available from TEL: tel.archives‐ouvertes.fr/INSMI/tel‐00531377/fr, Jul 2010.
[76] LeVequeRJ. Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, Cambridge University Press: Cambridge, 2002. · Zbl 1010.65040
[77] van LeerB. Towards the ultimate conservative difference scheme. V. A second‐order sequel to Godunov’s method. Journal of Computational Physics1979; 32(1):101-136. DOI: 10.1016/0021‐9991(79)90145‐1. (Available from: http://www.sciencedirect.com/science/article/B6WHY‐4DD1N8T‐C5/2/9b051d1cfcff715a3d0f4b7b7b0397cc). · Zbl 1364.65223
[78] DelestreO, MarcheF. A numerical scheme for a viscous shallow water model with friction. Journal of Scientific Computing2010. DOI: 10.1007/s10915‐010‐9393‐y. · Zbl 1426.76355
[79] HartenA, OsherS, EngquistB, ChakravarthySR. Some results on uniformly high‐order accurate essentially nonoscillatory schemes. Applied Numerical Mathematics1986; 2(3‐5):347-377. DOI: 10.1016/0168‐9274(86)90039‐5. (Available from: http://www.sciencedirect.com/science/article/B6TYD‐45GVV8T‐J/2/830ca2dce5e3fb34 ace9fa53ae5ab76b), special Issue in Honor of Milt Rose’s Sixtieth Birthday. · Zbl 0627.65101
[80] HartenA, EngquistB, OsherS, ChakravarthySR. Uniformly high order accurate essentially non‐oscillatory schemes, III. Journal of Computational Physics Aug 1987; 71:231-303. · Zbl 0652.65067
[81] ShuCW, OsherS. Efficient implementation of essentially non‐oscillatory shock‐capturing schemes. Journal of Computational Physics1988; 77(2):439-471. DOI: 10.1016/0021‐9991(88)90177‐5. (Available from: http://www.sciencedirect.com/science/article/B6WHY‐4DD1T6W‐MM/2/bef99e4b67bd7132c8af1984c34ce57e). · Zbl 0653.65072
[82] BouchutF, OunaissaH, PerthameB. Upwinding of the source term at interfaces for Euler equations with high friction. Computers and Mathematics with Applications2007; 53:361-375. DOI: 10.1016/j.camwa.2006.02.055. · Zbl 1213.76123
[83] NoelleS, PankratzN, PuppoG, NatvigJR. Well‐balanced finite volume schemes of arbitrary order of accuracy for shallow water flows. Journal of Computational Physics2006; 213(2):474-499. DOI: 10.1016/j.jcp.2005.08.019. (Available from: ttp://www.sciencedirect.com/science/article/B6WHY‐4HB4DN4‐1/2/15c5962d035c22b4fee10302b2606fa6). · Zbl 1088.76037
[84] StokerJJ. Water Waves: The Mathematical Theory with Applications. Interscience Publishers: New York, USA, 1957. · Zbl 0078.40805
[85] LeVequeRJ. Numerical Methods for Conservation Laws, Lectures in Mathematics. ETH Zurich, 1992. · Zbl 0847.65053
[86] OckendonH, TaylerAB. Applied Mathematical Sciences, Vol. 43. Springer, 1983. · Zbl 0512.76001
[87] KirkmanR, MooreT, AdlardC. The Walking Dead. Image Comics: Berkeley, 2003.
[88] WomersleyJ.On the oscillatory motion of a viscous liquid in thin‐walled elastic tube: I. Philosophical Magazine1955; 46:199-221. · Zbl 0064.43903
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.