×

Five-dimensional gauge theories and the local B-model. (English) Zbl 1495.14063

Five-dimensional supersymmetric gauge theories play an important role in both low-energy descriptions of 5d SCFTs and non-trivial quantum field theories which can be engineered by M-theory compactification on a Calabi-Yau 3-fold. In this paper, the authors propose a powerful method to compute prepotential for five-dimensional \(N = 1\) gauge theories on a circle with simple gauge groups. They put forward a systematic construction of Picard-Fuchs operators(i.e. operator generalizations of Picard-Fuchs equations) which annihilating the period integrals of the Seiberg-Witten curve. The method using Picard-Fuchs equations was known for toric Calabi-Yau 3-folds corresponding to the gauge theories with SU gauge groups. This paper aims to extend this idea to all the general simple gauge groups. For the simply-laced gauge groups, a beautiful formulation to construct Picard-Fuchs operators from the corresponding Frobenius manifold was established by generalizing the toric cases. As for non-simply laced gauge groups, the generalization is quite non-trivial because the analogous interpretation in terms of Frobenius manifolds is not clear. Moreover, the authors successfully generalized the computational method even for the non-simply-laced cases by focusing on the algebraic structure associated with the Seiberg-Witten curve. The method developed in this paper can be applied to many other known cases of the Seiberg-Witten curves, whose prepotentials were not computed before. For example, it had been believed for a long while that Seiberg-Witten curves for 5d gauge theories could be obtained from the relativistic Toda systems for the corresponding gauge groups. However, the Seiberg-Witten curves for non-simply laced gauge groups which can be predicted from integrable systems as spectral curves turn out to disagree with the correct prepotential computed from Nakajima-Yoshioka’s K-theoretic blow-up formula.
In conclusion, the paper under review presents a new and significant technique exploring the relationship between Seiberg-Witten prepotential obtained by blow-up formula and prepotential of spectral curve from some certain integrable system. They match well for the cases of ADE and do not match for the cases of BCFG. It is worth mentioning that it shed light on finding the proper integrable systems giving the correct Seiberg-Witten curves for 5d gauge theories with non-simply laced gauge groups.

MSC:

14J80 Topology of surfaces (Donaldson polynomials, Seiberg-Witten invariants)
81T13 Yang-Mills and other gauge theories in quantum field theory
81T30 String and superstring theories; other extended objects (e.g., branes) in quantum field theory
14D21 Applications of vector bundles and moduli spaces in mathematical physics (twistor theory, instantons, quantum field theory)
53D45 Gromov-Witten invariants, quantum cohomology, Frobenius manifolds

References:

[1] Aganagic, M.; Cheng, MCN; Dijkgraaf, R.; Krefl, D.; Vafa, C., Quantum geometry of refined topological strings, JHEP, 11, 019 (2012) · Zbl 1397.83117 · doi:10.1007/JHEP11(2012)019
[2] Aganagic, M.; Klemm, A.; Marino, M.; Vafa, C., Matrix model as a mirror of Chern-Simons theory, JHEP, 02, 010 (2004) · doi:10.1088/1126-6708/2004/02/010
[3] Alday, LF; Gaiotto, D.; Gukov, S.; Tachikawa, Y.; Verlinde, H., Loop and surface operators in \(\cal{N}= 2\) gauge theory and Liouville modular geometry, JHEP, 01, 113 (2010) · Zbl 1269.81078 · doi:10.1007/JHEP01(2010)113
[4] Awata, H.; Fuji, H.; Kanno, H.; Manabe, M.; Yamada, Y., Localization with a surface operator, irregular conformal blocks and open topological string, Adv. Theor. Math. Phys., 16, 725-804 (2012) · Zbl 1273.81178 · doi:10.4310/ATMP.2012.v16.n3.a1
[5] Awata, H.; Kanno, H., Instanton counting, Macdonald functions and the moduli space of D-branes, JHEP, 05, 039 (2005) · doi:10.1088/1126-6708/2005/05/039
[6] Awata, H., Kanno, H.: Refined BPS state counting from Nekrasov’s formula and Macdonald functions. Int. J. Mod. Phys. A 24, 2253-2306 (2009). arXiv:0805.0191 · Zbl 1170.81423
[7] Awata, H.; Yamada, Y., Five-dimensional AGT conjecture and the deformed Virasoro algebra, JHEP, 01, 125 (2010) · Zbl 1269.81157 · doi:10.1007/JHEP01(2010)125
[8] Benvenuti, S.; Hanany, A.; Mekareeya, N., The Hilbert series of the one instanton moduli space, JHEP, 06, 100 (2010) · Zbl 1288.81074 · doi:10.1007/JHEP06(2010)100
[9] Bertola, M., Frobenius manifold structure on orbit space of Jacobi groups. I, Difier. Geom. Appl., 13, 19-41 (2000) · Zbl 1033.11020 · doi:10.1016/S0926-2245(00)00026-7
[10] Bertola, M., Frobenius manifold structure on orbit space of Jacobi groups. II, Difier. Geom. Appl., 13, 213-233 (2000) · Zbl 1033.11021 · doi:10.1016/S0926-2245(00)00027-9
[11] Bonelli, G., Globlek, F., Tanzini, A.: Counting Yang-Mills instantons by surface operator renormalization group flow. Phys. Rev. Lett. 126, 231602 (2021). arXiv:2102.01627
[12] Bonelli, G.; Matone, M., Nonperturbative relations in \(\cal{N}= 2\) supersymmetric Yang-Mills theory and the Witten-Dijkgraaf-Verlinde-Verlinde equation, Phys. Rev. Lett., 77, 4712-4715 (1996) · doi:10.1103/PhysRevLett.77.4712
[13] Borot, G., Brini, A.: Chern-Simons theory on spherical Seifert manifolds, topological strings and integrable systems. Adv. Theor. Math. Phys. 22, 305-394 (2018). arXiv:1506.06887 · Zbl 1401.81070
[14] Borot, G.; Eynard, B.; Weisse, A., Root systems, spectral curves, and analysis of a Chern-Simons matrix model for Seifert fibered spaces, Sel. Math. New Ser., 23, 915-1025 (2017) · Zbl 1367.14014 · doi:10.1007/s00029-016-0266-6
[15] Brandhuber, A.; Itzhaki, N.; Sonnenschein, J.; Theisen, S.; Yankielowicz, S., On the M theory approach to (compactified) 5-D field theories, Phys. Lett. B, 415, 127-134 (1997) · doi:10.1016/S0370-2693(97)01249-5
[16] Brini, A.: \(E_8\) spectral curves. Proc. Lond. Math. Soc. 3(121), 954-1032 (2020). arXiv:1711.05958 · Zbl 1453.14089
[17] Brini, A.; Griguolo, L.; Seminara, D.; Tanzini, A., Chern-Simons theory on L(p, q) lens spaces and Gopakumar-Vafa duality, J. Geom. Phys., 60, 417-429 (2010) · Zbl 1185.81108 · doi:10.1016/j.geomphys.2009.11.006
[18] Brini, A.; Marino, M.; Stevan, S., The uses of the refined matrix model recursion, J. Math. Phys., 52, 052305 (2011) · Zbl 1317.81216 · doi:10.1063/1.3587063
[19] Brini, A.; Tanzini, A., Exact results for topological strings on resolved Y(p, q) singularities, Commun. Math. Phys., 289, 205-252 (2009) · Zbl 1195.14057 · doi:10.1007/s00220-009-0814-4
[20] Brini, A., van Gemst, K.: Mirror symmetry for extended afine Weyl groups. arXiv:2103.12673 · Zbl 1502.53126
[21] Bruschi, M.; Ragnisco, O., Lax representation and complete integrability for the periodic relativistic Toda lattice, Phys. Lett. A, 134, 365-370 (1989) · Zbl 0694.35187 · doi:10.1016/0375-9601(89)90736-6
[22] Chekhov, L.; Eynard, B., Hermitean matrix model free energy: Feynman graph technique for all genera, JHEP, 03, 014 (2006) · Zbl 1226.81137 · doi:10.1088/1126-6708/2006/03/014
[23] Chiang, TM; Klemm, A.; Yau, S-T; Zaslow, E., Local mirror symmetry: calculations and interpretations, Adv. Theor. Math. Phys., 3, 495-565 (1999) · Zbl 0976.32012 · doi:10.4310/ATMP.1999.v3.n3.a3
[24] Closset, C., Magureanu, H.: The \(U\)-plane of rank-one 4d \(\cal{N} = 2\) KK theories. arXiv:2107.03509
[25] Dijkgraaf, R., Verlinde, H.L., Verlinde, E.P.: Topological strings in \(d<1\). Nucl. Phys. B 352, 59-86 (1991) · Zbl 0783.58088
[26] Donaldson, SK, Instantons and geometric invariant theory, Commun. Math. Phys., 93, 453-460 (1984) · Zbl 0581.14008 · doi:10.1007/BF01212289
[27] Dubrovin, B., Integrable systems in topological field theory, Nucl. Phys. B, 379, 627-689 (1992) · doi:10.1016/0550-3213(92)90137-Z
[28] Dubrovin, B.: Geometry of 2D topological field theories, in “Integrable systems and quantum groups” (Montecatini Terme, 1993). Lecture Notes in Math. 1620, 120-348 (1994). arXiv:hep-th/9407018 · Zbl 0841.58065
[29] Dubrovin, B., Differential geometry of the space of orbits of a Coxeter group, Surv. Differ. Geom., 4, 181-211 (1998) · Zbl 0962.53049 · doi:10.4310/SDG.1998.v4.n1.a4
[30] Dubrovin, B.: On almost duality for Frobenius manifolds, in “Geometry, topology, and mathematical physics”. Am. Math. Soc. Transl. Ser. 2(212), 75-132 (2004) · Zbl 1063.53092
[31] Dubrovin, B.; Zhang, Y., Extended afine Weyl groups and Frobenius manifolds, Compos. Math., 111, 167-219 (1998) · Zbl 0964.32020 · doi:10.1023/A:1000258122329
[32] Eager, R.; Franco, S.; Schaeffer, K., Dimer models and integrable systems, JHEP, 06, 106 (2012) · Zbl 1397.37072 · doi:10.1007/JHEP06(2012)106
[33] Eguchi, T.; Kanno, H., Five-dimensional gauge theories and local mirror symmetry, Nucl. Phys. B, 586, 331-345 (2000) · Zbl 1043.81714 · doi:10.1016/S0550-3213(00)00375-8
[34] Eguchi, T.; Yang, S-K, A new description of the \(E_6\) singularity, Phys. Lett. B, 394, 315-322 (1997) · Zbl 1003.83512 · doi:10.1016/S0370-2693(97)00013-0
[35] Eynard, B.; Orantin, N., Invariants of algebraic curves and topological expansion, Commun. Number Theory Phys., 1, 347-452 (2007) · Zbl 1161.14026 · doi:10.4310/CNTP.2007.v1.n2.a4
[36] Fock, V.V., Marshakov, A.: Loop groups. Clusters, Dimers and Integrable systems. arXiv:1401.1606 · Zbl 1417.37248
[37] Fucito, F.; Morales, JF; Poghossian, R., Instantons on quivers and orientifolds, JHEP, 10, 037 (2004) · doi:10.1088/1126-6708/2004/10/037
[38] Gaiotto, D.; Neitzke, A.; Tachikawa, Y., Argyres-Seiberg duality and the Higgs branch, Commun. Math. Phys., 294, 389-410 (2010) · Zbl 1207.81169 · doi:10.1007/s00220-009-0938-6
[39] Gorsky, A.; Mironov, A., Solutions to the reaction equation and integrable systems for \(\cal{N}=2\) SQCD with classical groups, Nucl. Phys. B, 550, 513-530 (1999) · Zbl 0947.81119 · doi:10.1016/S0550-3213(99)00134-0
[40] Gottsche, L., Nakajima, H., Yoshioka, K.: K-theoretic Donaldson invariants via instanton counting. Pure Appl. Math. Q. 5, 1029-1111 (2009). arXiv:math/0611945 · Zbl 1192.14011
[41] Hanany, A.; Witten, E., Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics, Nucl. Phys. B, 492, 152-190 (1997) · Zbl 0996.58509 · doi:10.1016/S0550-3213(97)80030-2
[42] Hayashi, H., Kim, S.-S., Lee, K., Yagi, F.: Discrete theta angle from an O5-plane. JHEP 11, 041 (2017). arXiv:1707.07181 · Zbl 1383.81165
[43] Hoevenaars, LK, The WDVV equations in pure Seiberg-Witten theory, Acta Appl. Math., 86, 49-102 (2005) · Zbl 1105.14050 · doi:10.1007/s10440-005-0463-3
[44] Hoevenaars, LK; Martini, R., On the WDVV equations in five-dimensional gauge theories, Phys. Lett. B, 557, 94-104 (2003) · Zbl 1009.81042 · doi:10.1016/S0370-2693(03)00188-6
[45] Intriligator, KA; Morrison, DR; Seiberg, N., Five-dimensional supersymmetric gauge theories and degenerations of Calabi-Yau spaces, Nucl. Phys. B, 497, 56-100 (1997) · Zbl 0934.81061 · doi:10.1016/S0550-3213(97)00279-4
[46] Iqbal, A.; Kozcaz, C.; Vafa, C., The refined topological vertex, JHEP, 10, 069 (2009) · doi:10.1088/1126-6708/2009/10/069
[47] Ito, K., Picard-Fuchs equations and prepotential in \(\cal{N} = 2\) supersymmetric G2 Yang-Mills theory, Phys. Lett. B, 406, 54-59 (1997) · doi:10.1016/S0370-2693(97)00672-2
[48] Ito, K.; Yang, S-K, Flat coordinates, topological Landau-Ginzburg models and the Seiberg-Witten period integrals, Phys. Lett. B, 415, 45-53 (1997) · doi:10.1016/S0370-2693(97)01225-2
[49] Ito, K.; Yang, S-K, A-D-E singularity and prepotentials in \(\cal{N}= 2\) supersymmetric Yang-Mills theory, Int. J. Mod. Phys. A, 13, 5373-5390 (1998) · Zbl 0931.81040 · doi:10.1142/S0217751X98002432
[50] Ito, K.; Yang, S-K, The WDVV equations in \(\cal{N}= 2\) supersymmetric Yang-Mills theory, Phys. Lett. B, 433, 56-62 (1998) · doi:10.1016/S0370-2693(98)00669-8
[51] Kac, VG, Infinite-Dimensional Lie Algebras (1990), Cambridge: Cambridge University Press, Cambridge · Zbl 0716.17022 · doi:10.1017/CBO9780511626234
[52] Katz, SH; Klemm, A.; Vafa, C., Geometric engineering of quantum field theories, Nucl. Phys. B, 497, 173-195 (1997) · Zbl 0935.81058 · doi:10.1016/S0550-3213(97)00282-4
[53] Keller, C.A., Mekareeya, N., Song, J., Tachikawa, Y.: The ABCDEFG of instantons and W-algebras. JHEP 03, 045 (2012) · Zbl 1309.81165
[54] Keller, CA; Song, J., Counting exceptional instantons, JHEP, 07, 085 (2012) · Zbl 1398.81244 · doi:10.1007/JHEP07(2012)085
[55] Kol, B., 5-D field theories and M theory, JHEP, 11, 026 (1999) · Zbl 0957.81043 · doi:10.1088/1126-6708/1999/11/026
[56] Kozcaz, C.; Pasquetti, S.; Wyllard, N., A & B model approaches to surface operators and Toda theories, JHEP, 08, 042 (2010) · Zbl 1291.81328 · doi:10.1007/JHEP08(2010)042
[57] Kruglinskaya, O.; Marshakov, A., On lie groups and Toda lattices, J. Phys. A, 48, 125201 (2015) · Zbl 1312.37041 · doi:10.1088/1751-8113/48/12/125201
[58] Lawrence, AE; Nekrasov, N., Instanton sums and five-dimensional gauge theories, Nucl. Phys. B, 513, 239-265 (1998) · Zbl 1052.81595 · doi:10.1016/S0550-3213(97)00694-9
[59] Li, X., Yagi, F.: Thermodynamic limit of Nekrasov partition function for 5-brane web with O5-plane. JHEP 06, 004 (2021). arXiv:2102.09482 · Zbl 1466.81079
[60] Marino, M., Chern-Simons theory, matrix integrals, and perturbative three-manifold invariants, Commun. Math. Phys., 253, 25-49 (2004) · Zbl 1158.81353 · doi:10.1007/s00220-004-1194-4
[61] Marino, M.; Wyllard, N., A note on instanton counting for \(\cal{N} = 2\) gauge theories with classical gauge groups, JHEP, 05, 021 (2004) · doi:10.1088/1126-6708/2004/05/021
[62] Marshakov, A.; Mironov, A., 5-d and 6-d supersymmetric gauge theories: prepotentials from integrable systems, Nucl. Phys. B, 518, 59-91 (1998) · Zbl 0945.81067 · doi:10.1016/S0550-3213(98)00149-7
[63] Marshakov, A.; Mironov, A.; Morozov, A., WDVV - like equations in \(\cal{N} = 2\) SUSY Yang-Mills theory, Phys. Lett. B, 389, 43-52 (1996) · doi:10.1016/S0370-2693(96)01231-2
[64] Marshakov, A.; Mironov, A.; Morozov, A., WDVV equations from algebra of forms, Mod. Phys. Lett. A, 12, 773-788 (1997) · Zbl 1020.14500 · doi:10.1142/S0217732397000807
[65] Marshakov, A., Semenyakin, M.: Cluster integrable systems and spin chains. JHEP 10, 100 (2019). arXiv:1905.09921 · Zbl 1427.81173
[66] Martinec, EJ; Warner, NP, Integrable systems and supersymmetric gauge theory, Nucl. Phys. B, 459, 97-112 (1996) · Zbl 0996.37506 · doi:10.1016/0550-3213(95)00588-9
[67] McDaniel, A.; Smolinsky, L., Lax equations, weight lattices, and Prym-Tjurin varieties, Acta Math., 181, 283-305 (1998) · Zbl 0952.37047 · doi:10.1007/BF02392588
[68] Mironov, A.; Morozov, A., Nekrasov functions and exact Bohr-Zommerfeld integrals, JHEP, 04, 040 (2010) · Zbl 1272.81180 · doi:10.1007/JHEP04(2010)040
[69] Mironov, A.; Morozov, A., Nekrasov functions from exact BS periods: the case of SU(N), J. Phys. A, 43, 195401 (2010) · Zbl 1189.81237 · doi:10.1088/1751-8113/43/19/195401
[70] Mironov, A.; Morozov, A.; Zenkevich, Y.; Zotov, A., Spectral duality in integrable systems from AGT conjecture, JETP Lett., 97, 45-51 (2013) · doi:10.1134/S0021364013010062
[71] Nakajima, H., Yoshioka, K.: Lectures on instanton counting. In: CRM Proc. Lecture Notes, vol. 38. American Mathematical Society, Providence, pp. 31-101 (2004) · Zbl 1080.14016
[72] Nakajima, H., Yoshioka, K.: Instanton counting on blowup. 1. Invent. Math. 162, 313-355 (2005). arXiv:math/0306198 · Zbl 1100.14009
[73] Nakajima, H., Yoshioka, K.: Instanton counting on blowup. II. K-theoretic partition function. Transform. Groups 10, 489- 519 (2005). arXiv:math/0505553 · Zbl 1110.14015
[74] Nekrasov, N., Five dimensional gauge theories and relativistic integrable systems, Nucl. Phys. B, 531, 323-344 (1998) · Zbl 0961.81116 · doi:10.1016/S0550-3213(98)00436-2
[75] Nekrasov, N., Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys., 7, 831-864 (2003) · Zbl 1056.81068 · doi:10.4310/ATMP.2003.v7.n5.a4
[76] Nekrasov, N.; Okounkov, A., Seiberg-Witten theory and random partitions, Progr. Math., 244, 525-596 (2006) · Zbl 1233.14029 · doi:10.1007/0-8176-4467-9_15
[77] Nekrasov, N.; Shadchin, S., ABCD of instantons, Commun. Math. Phys., 252, 359-391 (2004) · Zbl 1108.81038 · doi:10.1007/s00220-004-1189-1
[78] Nekrasov, N., Shatashvili, S.: Quantization of integrable systems and four dimensional gauge theories. In: Contribution to 16th International Congress on Mathematical Physics (ICMP09), pp.265-289 · Zbl 1214.83049
[79] Nieri, F.; Pasquetti, S.; Passerini, F., 3d and 5d gauge theory partition functions as \(q\)-deformed CFT correlators, Lett. Math. Phys., 105, 109-148 (2015) · Zbl 1305.81112 · doi:10.1007/s11005-014-0727-9
[80] Nieri, F.; Pasquetti, S.; Passerini, F.; Torrielli, A., 5D partition functions, q-Virasoro systems and integrable spin-chains, JHEP, 12, 040 (2014) · doi:10.1007/JHEP12(2014)040
[81] Olive, DI; Turok, N., The symmetries of Dynkin diagrams and the reduction of Toda field equations, Nucl. Phys. B, 215, 470-494 (1983) · doi:10.1016/0550-3213(83)90256-0
[82] Ruijsenaars, SNM, Relativistic Toda systems, Commun. Math. Phys., 133, 217-247 (1990) · Zbl 0719.58019 · doi:10.1007/BF02097366
[83] Seiberg, N., Five-dimensional SUSY field theories, nontrivial fixed points and string dynamics, Phys. Lett. B, 388, 753-760 (1996) · doi:10.1016/S0370-2693(96)01215-4
[84] Seiberg, N.; Witten, E., Electric-magnetic duality, monopole condensation, and confinement in \(\cal{N} = 2\) supersymmetric Yang-Mills theory, Nucl. Phys. B, 426, 19-52 (1994) · Zbl 0996.81510 · doi:10.1016/0550-3213(94)90124-4
[85] Stedman, R.; Strachan, IAB, Extended \(\bigvee \)-systems and trigonometric solutions to the WDVV equations, J. Math. Phys., 62, 022301 (2021) · Zbl 1464.37074 · doi:10.1063/5.0024108
[86] Suris, Y.B.: The problem of integrable discretization: Hamiltonian approach. In: Progress in Mathematics, vol. 219. Birkhäuser (2003) · Zbl 1033.37030
[87] Tachikawa, Y.: Five-dimensional Chern-Simons terms and Nekrasov’s instanton counting. JHEP 02, 050 (2004). arXiv:hep-th/0401184
[88] Williams, H., Double Bruhat clls in Kac-Moody groups and integrable systems, Lett. Math. Phys., 103, 389-419 (2013) · Zbl 1293.17037 · doi:10.1007/s11005-012-0604-3
[89] Witten, E., Solutions of four-dimensional field theories via M-theory, Nucl. Phys. B, 500, 3-42 (1997) · Zbl 0934.81066 · doi:10.1016/S0550-3213(97)00416-1
[90] Zuber, JB, On Dubrovin topological field theories, Mod. Phys. Lett. A, 9, 749-760 (1994) · Zbl 1021.81901 · doi:10.1142/S0217732394000563
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.