×

Mirror symmetry for extended affine Weyl groups. (Symétrie miroir pour les groupes de Weyl affines étendus.) (English. French summary) Zbl 1502.53126

J. Éc. Polytech., Math. 9, 907-957 (2022); corrigendum ibid. 10, 1245-1246 (2023).
A flat Riemann manifold is called a Frobenius manifold if there is an associative symmetric 3-tensor with a local potential. For example, one could consider an associative quantum cup product in quantum cohomology of projective varieties, pencils of flat pairings on the base of the mini-versal deformations of hypersurface singularities, and Givental’s mirror construction relating Gromov-Witten invariants (quantum cohomology) to variation of Hodge structures of the mirror (Picard-Fuchs operators).
The authors provide a Lie-theoretic mirror symmetry construction for the orbit spaces \(\mathcal{M}^{DZ}_{\mathcal{R}}\) of extended affine Weyl groups as Frobenius manifolds. Mirror Frobenius manifolds are constructed as certain strata of a Hurewicz space, that is a space of isomorphism classes of covers of the complex lines by a genus g Riemann surface with ramification profile at infinity described by tuples of non-negative integers.
Roughly, the construction is the following: consider a complex simple Lie algebra and the highest weight of a non-trivial irreducible representation of minimal dimension. The characteristic polynomial in the irreducible representation for a pencil of group elements gives rise to spectral curves associated to affine relativistic Toda chains for arbitrary Dynkin types. It defines an embedding of the orbit spaces of extended affine Weyl groups into the Hurewicz space, where the image of the orbit spaces become sub-Frobenius manifolds.
The authors also provide three applications: first, they provide flat coordinates for the Saito metric of the Dubrovin-Zhang pencil and closed-form prepotentials for \(\mathcal{M}^{DZ}_{\mathcal{R}}\). Secondly, they compute the Lyashko-Looijenga multiplicity of the image of \(\mathcal{M}^{DZ}_{\mathcal{R}}\) inside the Hurewicz space. Lastly, they construct a bi-Hamiltonian dispersionless hierarchy on the loop space on \(\mathcal{M}^{DZ}_{\mathcal{R}}\) in Hamiltonian form for the canonical Poisson pencil associated to \(\mathcal{M}^{DZ}_{\mathcal{R}}\).

MSC:

53D45 Gromov-Witten invariants, quantum cohomology, Frobenius manifolds
53D37 Symplectic aspects of mirror symmetry, homological mirror symmetry, and Fukaya category
14B07 Deformations of singularities
20H15 Other geometric groups, including crystallographic groups

References:

[1] Antoniou, G.; Feigin, M.; Strachan, I. A. B., The Saito determinant for Coxeter discriminant strata (2020)
[2] Arnold, V. I., Topological classification of complex trigonometric polynomials and the combinatorics of graphs with an identical number of vertices and edges, Funktsional. Anal. i Prilozhen., 30, 1, 1-17, 96 (1996) · Zbl 0898.32019 · doi:10.1007/BF02383392
[3] Arnold, V. I.; Gusein-Zade, S. M.; Varchenko, A. N., Singularities of differentiable maps. Vol. I, 82 (1985), Birkhäuser Boston, Inc.: Birkhäuser Boston, Inc., Boston, MA · Zbl 0554.58001 · doi:10.1007/978-1-4612-5154-5
[4] Borot, G.; Brini, A., Chern-Simons theory on spherical Seifert manifolds, topological strings and integrable systems, Adv. Theo. Math. Phys., 22, 2, 305-394 (2018) · Zbl 1401.81070 · doi:10.4310/ATMP.2018.v22.n2.a2
[5] Bouchard, V.; Marino, M., From Hodge theory to integrability and TQFT tt*-geometry, 78, Hurwitz numbers, matrix models and enumerative geometry, 263-283 (2008), American Mathematical Society: American Mathematical Society, Providence, RI · Zbl 1151.14335 · doi:10.1090/pspum/078/2483754
[6] Brini, A., \(E_8\) spectral curves, Proc. London Math. Soc. (3), 121, 4, 954-1032 (2020) · Zbl 1453.14089 · doi:10.1112/plms.12331
[7] Brini, A., Exterior powers of the adjoint representation and the Weyl ring of \(E_8\), J. Algebra, 551, 301-341 (2020) · Zbl 1478.22010 · doi:10.1016/j.jalgebra.2020.01.020
[8] Brini, A.; Cavalieri, R.; Ross, D., Crepant resolutions and open strings, J. reine angew. Math., 755, 191-245 (2019) · Zbl 1428.14087 · doi:10.1515/crelle-2017-0011
[9] Brini, A.; Osuga, K., Five-dimensional gauge theories and the local B-model, Lett. Math. Phys., 112, 48 p. pp. (2022) · Zbl 1495.14063 · doi:10.1007/s11005-022-01538-x
[10] Caporaso, N.; Griguolo, L.; Marino, M.; Pasquetti, S.; Seminara, D., Phase transitions, double-scaling limit, and topological strings, Phys. Rev. D, 75, 4, 24 p. pp. (2007) · doi:10.1103/PhysRevD.75.046004
[11] Carlet, G., The extended bigraded Toda hierarchy, J. Phys. A, 39, 30, 9411-9435 (2006) · Zbl 1096.37041 · doi:10.1088/0305-4470/39/30/003
[12] Cheng, J.; Milanov, T., The extended D-Toda hierarchy, Selecta Math. (N.S.), 27, 2, 85 p. pp. (2021) · Zbl 1480.37077 · doi:10.1007/s00029-021-00646-1
[13] Crescimanno, M. J.; Taylor, W., Large \(N\) phases of chiral QCD in two-dimensions, Nuclear Phys. B, 437, 3-24 (1995) · Zbl 0972.81165 · doi:10.1016/0550-3213(94)00561-R
[14] Dubrovin, B., Hamiltonian formalism of Whitham type hierarchies and topological Landau-Ginsburg models, Comm. Math. Phys., 145, 195-207 (1992) · Zbl 0753.58039 · doi:10.1007/BF02099286
[15] Dubrovin, B., Integrable systems in topological field theory, Nuclear Phys. B, 379, 3, 627-689 (1992) · doi:10.1016/0550-3213(92)90137-Z
[16] Dubrovin, B.; Francaviglia, M.; Greco, S., Integrable systems and quantum groups, 1620, Geometry of 2D topological field theory, 120-348 (1996), Springer-Verlag: Springer-Verlag, Berlin · Zbl 0841.58065 · doi:10.1007/BFb0094793
[17] Dubrovin, B., Integrable systems, 4, Differential geometry of the space of orbits of a Coxeter group, 181-211 (1998), Int. Press: Int. Press, Boston, MA · Zbl 0962.53049 · doi:10.4310/SDG.1998.v4.n1.a4
[18] Dubrovin, B., The Painlevé property, Painlevé transcendents and two-dimensional topological field theory, 287-412 (1999), Springer: Springer, New York · Zbl 1026.34095 · doi:10.1007/978-1-4612-1532-5_6
[19] Dubrovin, B., Geometry, topology, and mathematical physics, 212, On almost duality for Frobenius manifolds, 75-132 (2004), American Mathematical Society: American Mathematical Society, Providence, RI · Zbl 1063.53092
[20] Dubrovin, B.; Strachan, I.; Zhang, Y.; Zuo, D., Extended affine Weyl groups of BCD-type: Their Frobenius manifolds and Landau-Ginzburg superpotentials, Adv. Math., 351, 897-946 (2019) · Zbl 1418.53088 · doi:10.1016/j.aim.2019.05.030
[21] Dubrovin, B.; Zhang, Y., Extended affine Weyl groups and Frobenius manifolds, Compositio Math., 111, 2, 167-219 (1998) · Zbl 0964.32020 · doi:10.1023/A:1000258122329
[22] Dunin-Barkowski, P.; Orantin, N.; Shadrin, S.; Spitz, L., Identification of the Givental formula with the spectral curve topological recursion procedure, Comm. Math. Phys., 328, 669-700 (2014) · Zbl 1293.53090 · doi:10.1007/s00220-014-1887-2
[23] Ekedahl, T.; Lando, S.; Shapiro, M.; Vainshtein, A., Hurwitz numbers and intersections on moduli spaces of curves, Invent. Math., 146, 297-327 (2001) · Zbl 1073.14041 · doi:10.1007/s002220100164
[24] Fock, V. V.; Marshakov, A., Geometry and quantization of moduli spaces, Loop groups, clusters, dimers and integrable systems, 1-66 (2016), Birkhäuser/Springer: Birkhäuser/Springer, Cham · Zbl 1417.37248
[25] Fulton, W., Hurwitz schemes and irreducibility of moduli of algebraic curves, Ann. of Math. (2), 90, 542-575 (1969) · Zbl 0194.21901 · doi:10.2307/1970748
[26] Fulton, W.; Harris, J., Representation theory, 129 (1991), Springer-Verlag: Springer-Verlag, New York · Zbl 0744.22001 · doi:10.1007/978-1-4612-0979-9
[27] Goulden, I. P.; Jackson, D. M., The combinatorial relationship between trees, cacti and certain connection coefficients for the symmetric group, European J. Combin., 13, 5, 357-365 (1992) · Zbl 0804.05023 · doi:10.1016/S0195-6698(05)80015-0
[28] Goulden, I. P.; Jackson, D. M.; Vainshtein, A., The number of ramified coverings of the sphere by the torus and surfaces of higher genera, Ann. Comb., 4, 1, 27-46 (2000) · Zbl 0957.58011 · doi:10.1007/PL00001274
[29] Goupil, A.; Schaeffer, G., Factoring \(n\)-cycles and counting maps of given genus, European J. Combin., 19, 7, 819-834 (1998) · Zbl 0915.05007 · doi:10.1006/eujc.1998.0215
[30] Ito, K.; Yang, S-K., Flat coordinates, topological Landau-Ginzburg models and the Seiberg-Witten period integrals, Phys. Lett. B, 415, 45-53 (1997) · doi:10.1016/S0370-2693(97)01225-2
[31] Krichever, I. M., The tau function of the universal Whitham hierarchy, matrix models and topological field theories, Comm. Pure Appl. Math., 47, 437 (1994) · Zbl 0811.58064 · doi:10.1002/cpa.3160470403
[32] Lando, S. K., Ramified coverings of the two-dimensional sphere and intersection theory in spaces of meromorphic functions on algebraic curves, Uspehi Mat. Nauk, 57, 3-345, 29-98 (2002) · Zbl 1054.14037 · doi:10.1070/RM2002v057n03ABEH000511
[33] Lando, S. K.; Zvonkine, D., On multiplicities of the Lyashko-Looijenga mapping on strata of the discriminant, Funct. Anal. Appl., 33, 3, 178-188 (1999) · Zbl 0953.32007 · doi:10.1007/BF02465202
[34] Lando, S. K.; Zvonkine, D., Counting ramified converings and intersection theory on spaces of rational functions. I. Cohomology of Hurwitz spaces, Moscow Math. J., 7, 1, 85-107 (2007) · Zbl 1131.14034 · doi:10.17323/1609-4514-2007-7-1-85-107
[35] Lerche, W.; Warner, N. P., Exceptional SW geometry from ALE fibrations, Phys. Lett. B, 423, 1-2, 79-86 (1998) · doi:10.1016/S0370-2693(98)00106-3
[36] Looijenga, E., The complement of the bifurcation variety of a simple singularity, Invent. Math., 23, 105-116 (1974) · Zbl 0278.32008 · doi:10.1007/BF01405164
[37] Lyashko, O. V., The geometry of bifurcation diagrams, Uspehi Mat. Nauk, 34, 3-207, 205-206 (1979) · Zbl 0448.32010
[38] McDaniel, A.; Smolinsky, L., A Lie-theoretic Galois theory for the spectral curves of an integrable system. I, Comm. Math. Phys., 149, 1, 127-148 (1992) · Zbl 0766.58030 · doi:10.1007/BF02096626
[39] McDaniel, A.; Smolinsky, L., A Lie-theoretic Galois theory for the spectral curves of an integrable system. II, Trans. Amer. Math. Soc., 349, 2, 713-746 (1997) · Zbl 0868.58046 · doi:10.1090/S0002-9947-97-01853-9
[40] Milanov, T.; Shen, Y.; Tseng, H-H., Gromov-Witten theory of Fano orbifold curves and ADE-Toda Hierarchies, Geom. Topol., 20, 4, 2135-2218 (2016) · Zbl 1394.14037 · doi:10.2140/gt.2016.20.2135
[41] Nekrasov, N., Five dimensional gauge theories and relativistic integrable systems, Nuclear Phys. B, 531, 1-3, 323-344 (1998) · Zbl 0961.81116 · doi:10.1016/S0550-3213(98)00436-2
[42] Norbury, P.; Scott, N., Gromov-Witten invariants of \(\mathbb{P}^1\) and Eynard-Orantin invariants, Geom. Topol., 18, 4, 1865-1910 (2014) · Zbl 1308.05011 · doi:10.2140/gt.2014.18.1865
[43] Panov, D.; Zvonkine, D., Counting meromorphic functions with critical points of large multiplicities, J. Math. Sci., 126, 2, 1095-1110 (2005) · Zbl 1086.30039 · doi:10.1007/s10958-005-0006-5
[44] Rossi, P., Gromov-Witten theory of orbicurves, the space of tri-polynomials and symplectic field theory of Seifert fibrations, Math. Ann., 348, 2, 265-287 (2010) · Zbl 1235.14053 · doi:10.1007/s00208-009-0471-0
[45] Szablikowski, B. M.; Blaszak, M., Dispersionful analog of the Whitham hierarchy, J. Math. Phys., 49, 8, 082701, 20 (2008) · Zbl 1152.81615 · doi:10.1063/1.2970774
[46] Williams, H., Double Bruhat cells in Kac-Moody groups and integrable systems, Lett. Math. Phys., 103, 389-419 (2013) · Zbl 1293.17037 · doi:10.1007/s11005-012-0604-3
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.