×

Quasi-normal modes of dyonic black holes and magneto-hydrodynamics. (English) Zbl 1522.83198

Summary: We revisit the magneto-hydrodynamics in \((2+1)\) dimensions and confirm that it is consistent with the quasi-normal modes of the \((3+1)\) dimensional dyonic black holes in the most general set-up with finite density, magnetic field and wave vector. We investigate all possible modes (sound, shear, diffusion, cyclotron etc.) and their interplay. For the magneto-hydrodynamics we perform a complete and detailed analysis correcting some prefactors in the literature, which is important for the comparison with quasi-normal modes. For the quasi-normal mode computations in holography we identify the independent fluctuation variables of the dyonic black holes, which is nontrivial at finite density and magnetic field. As an application of the quasi-normal modes of the dyonic black holes we investigate a transport property, the diffusion constant. We find that the diffusion constant at finite density and magnetic field saturates the lower bound at low temperature. We show that this bound can be understood from the pole-skipping point.

MSC:

83C57 Black holes
76W05 Magnetohydrodynamics and electrohydrodynamics
76Y05 Quantum hydrodynamics and relativistic hydrodynamics
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
83E05 Geometrodynamics and the holographic principle
81T35 Correspondence, duality, holography (AdS/CFT, gauge/gravity, etc.)
83C55 Macroscopic interaction of the gravitational field with matter (hydrodynamics, etc.)

References:

[1] S. A. Hartnoll, A. Lucas and S. Sachdev, Holographic quantum matter, arXiv:1612.07324 [INSPIRE]. · Zbl 1407.82005
[2] J. Zaanen, Y. Liu, Y.-W. Sun and K. Schalm, Holographic duality in condensed matter physics, Cambridge University Press, Cambridge, U.K. (2015).
[3] M. Ammon and J. Erdmenger, Gauge/gravity duality, Cambridge University Press, Cambridge, U.K. (2015). · Zbl 1327.81001
[4] M. Baggioli, Applied holography: a practical mini-course, Springer, Cham, Switzerland (2019) [arXiv:1908.02667] [INSPIRE].
[5] Hartnoll, SA; Kovtun, PK; Muller, M.; Sachdev, S., Theory of the Nernst effect near quantum phase transitions in condensed matter, and in dyonic black holes, Phys. Rev. B, 76 (2007) · doi:10.1103/PhysRevB.76.144502
[6] Basu, P.; Mukherjee, A.; Shieh, H-H, Supercurrent: vector hair for an AdS black hole, Phys. Rev. D, 79 (2009) · doi:10.1103/PhysRevD.79.045010
[7] Herzog, CP; Kovtun, PK; Son, DT, Holographic model of superfluidity, Phys. Rev. D, 79 (2009) · doi:10.1103/PhysRevD.79.066002
[8] Hartnoll, SA; Herzog, CP; Horowitz, GT, Building a holographic superconductor, Phys. Rev. Lett., 101 (2008) · Zbl 1404.82086 · doi:10.1103/PhysRevLett.101.031601
[9] Hartnoll, SA; Herzog, CP; Horowitz, GT, Holographic superconductors, JHEP, 12, 015 (2008) · Zbl 1329.81390 · doi:10.1088/1126-6708/2008/12/015
[10] Jeong, H-S; Kim, K-Y, Homes’ law in holographic superconductor with linear-T resistivity, JHEP, 03, 060 (2022) · Zbl 1522.82016 · doi:10.1007/JHEP03(2022)060
[11] Donos, A.; Kailidis, P.; Pantelidou, C., Dissipation in holographic superfluids, JHEP, 09, 134 (2021) · doi:10.1007/JHEP09(2021)134
[12] Baggioli, M.; Frangi, G., Holographic supersolids, JHEP, 06, 152 (2022) · Zbl 1522.81423 · doi:10.1007/JHEP06(2022)152
[13] Jeong, H-S; Kim, K-Y; Sun, Y-W, Holographic entanglement density for spontaneous symmetry breaking, JHEP, 06, 078 (2022) · Zbl 1522.81143 · doi:10.1007/JHEP06(2022)078
[14] Davison, RA; Goutéraux, B., Momentum dissipation and effective theories of coherent and incoherent transport, JHEP, 01, 039 (2015) · doi:10.1007/JHEP01(2015)039
[15] Amoretti, A.; Areán, D.; Goutéraux, B.; Musso, D., Effective holographic theory of charge density waves, Phys. Rev. D, 97 (2018) · doi:10.1103/PhysRevD.97.086017
[16] Andrade, T.; Baggioli, M.; Krikun, A.; Poovuttikul, N., Pinning of longitudinal phonons in holographic spontaneous helices, JHEP, 02, 085 (2018) · Zbl 1387.81298 · doi:10.1007/JHEP02(2018)085
[17] Amoretti, A.; Areán, D.; Goutéraux, B.; Musso, D., Universal relaxation in a holographic metallic density wave phase, Phys. Rev. Lett., 123 (2019) · doi:10.1103/PhysRevLett.123.211602
[18] Ammon, M.; Baggioli, M.; Jiménez-Alba, A., A unified description of translational symmetry breaking in holography, JHEP, 09, 124 (2019) · Zbl 1423.83067 · doi:10.1007/JHEP09(2019)124
[19] Amoretti, A.; Areán, D.; Goutéraux, B.; Musso, D., Diffusion and universal relaxation of holographic phonons, JHEP, 10, 068 (2019) · doi:10.1007/JHEP10(2019)068
[20] Amoretti, A.; Areán, D.; Goutéraux, B.; Musso, D., Gapless and gapped holographic phonons, JHEP, 01, 058 (2020) · doi:10.1007/JHEP01(2020)058
[21] Baggioli, M.; Kim, K-Y; Li, L.; Li, W-J, Holographic axion model: a simple gravitational tool for quantum matter, Sci. China Phys. Mech. Astron., 64 (2021) · doi:10.1007/s11433-021-1681-8
[22] Jeong, H-S; Kim, K-Y; Sun, Y-W, Bound of diffusion constants from pole-skipping points: spontaneous symmetry breaking and magnetic field, JHEP, 07, 105 (2021) · doi:10.1007/JHEP07(2021)105
[23] Amado, I.; Kaminski, M.; Landsteiner, K., Hydrodynamics of holographic superconductors, JHEP, 05, 021 (2009) · doi:10.1088/1126-6708/2009/05/021
[24] Herzog, CP; Yarom, A., Sound modes in holographic superfluids, Phys. Rev. D, 80 (2009) · doi:10.1103/PhysRevD.80.106002
[25] Yarom, A., Fourth sound of holographic superfluids, JHEP, 07, 070 (2009) · doi:10.1088/1126-6708/2009/07/070
[26] Herzog, CP; Lisker, N.; Surowka, P.; Yarom, A., Transport in holographic superfluids, JHEP, 08, 052 (2011) · Zbl 1298.81299 · doi:10.1007/JHEP08(2011)052
[27] Amado, I.; Arean, D.; Jimenez-Alba, A.; Landsteiner, K.; Melgar, L.; Landea, IS, Holographic type II Goldstone bosons, JHEP, 07, 108 (2013) · doi:10.1007/JHEP07(2013)108
[28] Amado, I.; Areán, D.; Jiménez-Alba, A.; Landsteiner, K.; Melgar, L.; Salazar Landea, I., Holographic superfluids and the Landau criterion, JHEP, 02, 063 (2014) · doi:10.1007/JHEP02(2014)063
[29] Esposito, A.; Garcia-Saenz, S.; Penco, R., First sound in holographic superfluids at zero temperature, JHEP, 12, 136 (2016) · Zbl 1390.83157 · doi:10.1007/JHEP12(2016)136
[30] Arean, D.; Baggioli, M.; Grieninger, S.; Landsteiner, K., A holographic superfluid symphony, JHEP, 11, 206 (2021) · Zbl 1521.81281 · doi:10.1007/JHEP11(2021)206
[31] Ammon, M.; Arean, D.; Baggioli, M.; Gray, S.; Grieninger, S., Pseudo-spontaneous U(1) symmetry breaking in hydrodynamics and holography, JHEP, 03, 015 (2022) · Zbl 1522.83271 · doi:10.1007/JHEP03(2022)015
[32] Blake, M.; Davison, RA; Grozdanov, S.; Liu, H., Many-body chaos and energy dynamics in holography, JHEP, 10, 035 (2018) · Zbl 1402.83053 · doi:10.1007/JHEP10(2018)035
[33] Arean, D.; Davison, RA; Goutéraux, B.; Suzuki, K., Hydrodynamic diffusion and its breakdown near AdS_2quantum critical points, Phys. Rev. X, 11 (2021)
[34] Wu, N.; Baggioli, M.; Li, W-J, On the universality of AdS_2diffusion bounds and the breakdown of linearized hydrodynamics, JHEP, 05, 014 (2021) · Zbl 1466.83104 · doi:10.1007/JHEP05(2021)014
[35] Jeong, H-S; Kim, K-Y; Sun, Y-W, The breakdown of magneto-hydrodynamics near AdS_2fixed point and energy diffusion bound, JHEP, 02, 006 (2022) · Zbl 1522.83089 · doi:10.1007/JHEP02(2022)006
[36] K.-B. Huh, H.-S. Jeong, K.-Y. Kim and Y.-W. Sun, Upper bound of the charge diffusion constant in holography, arXiv:2111.07515 [INSPIRE].
[37] Liu, Y.; Wu, X-M, Breakdown of hydrodynamics from holographic pole collision, JHEP, 01, 155 (2022) · Zbl 1521.83056 · doi:10.1007/JHEP01(2022)155
[38] V. E. Hubeny, S. Minwalla and M. Rangamani, The fluid/gravity correspondence, in Theoretical Advanced Study Institute in Elementary Particle Physics. String theory and its applications: from meV to the Planck scale, (2012), p. 348 [arXiv:1107.5780] [INSPIRE]. · Zbl 1263.83009
[39] Bhattacharyya, S.; Hubeny, VE; Minwalla, S.; Rangamani, M., Nonlinear fluid dynamics from gravity, JHEP, 02, 045 (2008) · doi:10.1088/1126-6708/2008/02/045
[40] Banerjee, N.; Bhattacharya, J.; Bhattacharyya, S.; Dutta, S.; Loganayagam, R.; Surowka, P., Hydrodynamics from charged black branes, JHEP, 01, 094 (2011) · Zbl 1214.83014 · doi:10.1007/JHEP01(2011)094
[41] Erdmenger, J.; Haack, M.; Kaminski, M.; Yarom, A., Fluid dynamics of R-charged black holes, JHEP, 01, 055 (2009) · Zbl 1243.83037 · doi:10.1088/1126-6708/2009/01/055
[42] Bhattacharyya, S.; Loganayagam, R.; Minwalla, S.; Nampuri, S.; Trivedi, SP; Wadia, SR, Forced fluid dynamics from gravity, JHEP, 02, 018 (2009) · Zbl 1245.83019 · doi:10.1088/1126-6708/2009/02/018
[43] Hubeny, VE; Rangamani, M., A holographic view on physics out of equilibrium, Adv. High Energy Phys., 2010 (2010) · Zbl 1216.83028 · doi:10.1155/2010/297916
[44] Hartnoll, SA; Herzog, CP, Ohm’s law at strong coupling: S duality and the cyclotron resonance, Phys. Rev. D, 76 (2007) · doi:10.1103/PhysRevD.76.106012
[45] Hartnoll, SA; Kovtun, P., Hall conductivity from dyonic black holes, Phys. Rev. D, 76 (2007) · doi:10.1103/PhysRevD.76.066001
[46] Herzog, CP; Kovtun, P.; Sachdev, S.; Son, DT, Quantum critical transport, duality, and M-theory, Phys. Rev. D, 75 (2007) · doi:10.1103/PhysRevD.75.085020
[47] Denef, F.; Hartnoll, SA; Sachdev, S., Quantum oscillations and black hole ringing, Phys. Rev. D, 80 (2009) · doi:10.1103/PhysRevD.80.126016
[48] O’Bannon, A., Hall conductivity of flavor fields from AdS/CFT, Phys. Rev. D, 76 (2007) · doi:10.1103/PhysRevD.76.086007
[49] Buchbinder, EI; Vazquez, SE; Buchel, A., Sound waves in (2 + 1) dimensional holographic magnetic fluids, JHEP, 12, 090 (2008) · Zbl 1329.81264 · doi:10.1088/1126-6708/2008/12/090
[50] Buchbinder, EI; Buchel, A., The fate of the sound and diffusion in holographic magnetic field, Phys. Rev. D, 79 (2009) · doi:10.1103/PhysRevD.79.046006
[51] Buchbinder, EI; Buchel, A., Relativistic conformal magneto-hydrodynamics from holography, Phys. Lett. B, 678, 135 (2009) · doi:10.1016/j.physletb.2009.06.003
[52] Kovtun, P., Lectures on hydrodynamic fluctuations in relativistic theories, J. Phys. A, 45 (2012) · Zbl 1348.83039 · doi:10.1088/1751-8113/45/47/473001
[53] Bergman, O.; Erdmenger, J.; Lifschytz, G., A review of magnetic phenomena in probe-brane holographic matter, Lect. Notes Phys., 871, 591 (2013) · doi:10.1007/978-3-642-37305-3_22
[54] Gubankova, E.; Brill, J.; Cubrovic, M.; Schalm, K.; Schijven, P.; Zaanen, J., Holographic description of strongly correlated electrons in external magnetic fields, Lect. Notes Phys., 871, 555 (2013) · doi:10.1007/978-3-642-37305-3_21
[55] Dutta, S.; Jain, A.; Soni, R., Dyonic black hole and holography, JHEP, 12, 060 (2013) · doi:10.1007/JHEP12(2013)060
[56] Kim, K-Y; Kim, KK; Seo, Y.; Sin, S-J, Thermoelectric conductivities at finite magnetic field and the Nernst effect, JHEP, 07, 027 (2015) · Zbl 1388.83054 · doi:10.1007/JHEP07(2015)027
[57] Amoretti, A.; Musso, D., Magneto-transport from momentum dissipating holography, JHEP, 09, 094 (2015) · Zbl 1388.83161 · doi:10.1007/JHEP09(2015)094
[58] Blake, M.; Donos, A.; Lohitsiri, N., Magnetothermoelectric response from holography, JHEP, 08, 124 (2015) · Zbl 1388.83187 · doi:10.1007/JHEP08(2015)124
[59] Lucas, A.; Sachdev, S., Memory matrix theory of magnetotransport in strange metals, Phys. Rev. B, 91 (2015) · doi:10.1103/PhysRevB.91.195122
[60] Zhou, Z.; Wu, J-P; Ling, Y., DC and Hall conductivity in holographic massive Einstein-Maxwell-dilaton gravity, JHEP, 08, 067 (2015) · Zbl 1388.83060 · doi:10.1007/JHEP08(2015)067
[61] Davison, RA; Goutéraux, B., Dissecting holographic conductivities, JHEP, 09, 090 (2015) · Zbl 1388.83220 · doi:10.1007/JHEP09(2015)090
[62] Blake, M., Magnetotransport from the fluid/gravity correspondence, JHEP, 10, 078 (2015) · Zbl 1388.83186 · doi:10.1007/JHEP10(2015)078
[63] Donos, A.; Gauntlett, JP; Griffin, T.; Melgar, L., DC conductivity of magnetised holographic matter, JHEP, 01, 113 (2016) · Zbl 1388.83345 · doi:10.1007/JHEP01(2016)113
[64] Seo, Y.; Kim, K-Y; Kim, KK; Sin, S-J, Character of matter in holography: spin-orbit interaction, Phys. Lett. B, 759, 104 (2016) · Zbl 1367.70064 · doi:10.1016/j.physletb.2016.05.059
[65] Ahn, B.; Hyun, S.; Kim, KK; Park, S-A; Yi, S-H, Holography without counter terms, Phys. Rev. D, 94 (2016) · doi:10.1103/PhysRevD.94.024043
[66] Amoretti, A.; Baggioli, M.; Magnoli, N.; Musso, D., Chasing the cuprates with dilatonic dyons, JHEP, 06, 113 (2016) · Zbl 1388.83334 · doi:10.1007/JHEP06(2016)113
[67] Kim, KK; Park, M.; Kim, K-Y, Ward identity and Homes’ law in a holographic superconductor with momentum relaxation, JHEP, 10, 041 (2016) · doi:10.1007/JHEP10(2016)041
[68] X.-H. Ge, Y. Tian, S.-Y. Wu and S.-F. Wu, Hyperscaling violating black hole solutions and magneto-thermoelectric DC conductivities in holography, Phys. Rev. D96 (2017) 046015 [Erratum ibid.97 (2018) 089901] [arXiv:1606.05959] [INSPIRE].
[69] Khimphun, S.; Lee, B-H; Park, C.; Zhang, Y-L, Anisotropic dyonic black brane and its effects on holographic conductivity, JHEP, 10, 064 (2017) · Zbl 1383.81236 · doi:10.1007/JHEP10(2017)064
[70] Blake, M.; Davison, RA; Sachdev, S., Thermal diffusivity and chaos in metals without quasiparticles, Phys. Rev. D, 96 (2017) · doi:10.1103/PhysRevD.96.106008
[71] Cremonini, S.; Hoover, A.; Li, L., Backreacted DBI magnetotransport with momentum dissipation, JHEP, 10, 133 (2017) · doi:10.1007/JHEP10(2017)133
[72] Seo, Y.; Song, G.; Park, C.; Sin, S-J, Small Fermi surfaces and strong correlation effects in Dirac materials with holography, JHEP, 10, 204 (2017) · doi:10.1007/JHEP10(2017)204
[73] Chen, Z-N; Ge, X-H; Wu, S-Y; Yang, G-H; Zhang, H-S, Magnetothermoelectric DC conductivities from holography models with hyperscaling factor in Lifshitz spacetime, Nucl. Phys. B, 924, 387 (2017) · Zbl 1373.78408 · doi:10.1016/j.nuclphysb.2017.09.016
[74] Blauvelt, E.; Cremonini, S.; Hoover, A.; Li, L.; Waskie, S., Holographic model for the anomalous scalings of the cuprates, Phys. Rev. D, 97 (2018) · doi:10.1103/PhysRevD.97.061901
[75] N. Angelinos, Criticality and transport in magnetized holographic systems, arXiv:1812.00376 [INSPIRE].
[76] Pal, SS, Thermal and thermoelectric conductivity of Einstein-DBI system, Eur. Phys. J. C, 80, 225 (2020) · doi:10.1140/epjc/s10052-020-7765-5
[77] Kim, KK; Kim, K-Y; Seo, Y.; Sin, S-J, Building magnetic hysteresis in holography, JHEP, 07, 158 (2019) · doi:10.1007/JHEP07(2019)158
[78] Hoyos, C.; Peña-Benitez, F.; Witkowski, P., Hall viscosity in a strongly coupled magnetized plasma, JHEP, 08, 146 (2019) · doi:10.1007/JHEP08(2019)146
[79] Song, G.; Seo, Y.; Kim, K-Y; Sin, S-J, Interaction induced quasi-particle spectrum in holography, JHEP, 11, 103 (2019) · Zbl 1429.83081 · doi:10.1007/JHEP11(2019)103
[80] Amoretti, A., Hydrodynamical description for magneto-transport in the strange metal phase of Bi-2201, Phys. Rev. Res., 2 (2020) · doi:10.1103/PhysRevResearch.2.023387
[81] Baggioli, M.; Grieninger, S.; Li, L., Magnetophonons & type-B Goldstones from hydrodynamics to holography, JHEP, 09, 037 (2020) · doi:10.1007/JHEP09(2020)037
[82] An, Y-S; Ji, T.; Li, L., Magnetotransport and complexity of holographic metal-insulator transitions, JHEP, 10, 023 (2020) · doi:10.1007/JHEP10(2020)023
[83] Kim, KK; Kim, K-Y; Sin, S-J; Seo, Y., Impurity effect on hysteric magnetoconductance: holographic approach, JHEP, 11, 046 (2021) · Zbl 1521.81262 · doi:10.1007/JHEP11(2021)046
[84] Amoretti, A.; Brattan, DK; Magnoli, N.; Scanavino, M., Magneto-thermal transport implies an incoherent Hall conductivity, JHEP, 08, 097 (2020) · doi:10.1007/JHEP08(2020)097
[85] Amoretti, A.; Arean, D.; Brattan, DK; Martinoia, L., Hydrodynamic magneto-transport in holographic charge density wave states, JHEP, 11, 011 (2021) · Zbl 1466.81048 · doi:10.1007/JHEP11(2021)011
[86] Amoretti, A.; Arean, D.; Brattan, DK; Magnoli, N., Hydrodynamic magneto-transport in charge density wave states, JHEP, 05, 027 (2021) · Zbl 1466.81048 · doi:10.1007/JHEP05(2021)027
[87] Jokela, N.; Järvinen, M.; Lippert, M., Novel semi-circle law and Hall sliding in a strongly interacting electron liquid, JHEP, 05, 144 (2022) · Zbl 1522.81785 · doi:10.1007/JHEP05(2022)144
[88] Priyadarshinee, S.; Mahapatra, S.; Banerjee, I., Analytic topological hairy dyonic black holes and thermodynamics, Phys. Rev. D, 104 (2021) · doi:10.1103/PhysRevD.104.084023
[89] Edalati, M.; Jottar, JI; Leigh, RG, Holography and the sound of criticality, JHEP, 10, 058 (2010) · Zbl 1291.81242 · doi:10.1007/JHEP10(2010)058
[90] Davison, RA; Kaplis, NK, Bosonic excitations of the AdS4 Reissner-Nordström black hole, JHEP, 12, 037 (2011) · Zbl 1306.81211 · doi:10.1007/JHEP12(2011)037
[91] Gushterov, NI; O’Bannon, A.; Rodgers, R., Holographic zero sound from spacetime-filling branes, JHEP, 10, 076 (2018) · Zbl 1402.81210 · doi:10.1007/JHEP10(2018)076
[92] Baggioli, M.; Gran, U.; Tornsö, M., Collective modes of polarizable holographic media in magnetic fields, JHEP, 06, 014 (2021) · doi:10.1007/JHEP06(2021)014
[93] Donos, A.; Pantelidou, C.; Ziogas, V., Incoherent hydrodynamics of density waves in magnetic fields, JHEP, 05, 270 (2021) · doi:10.1007/JHEP05(2021)270
[94] Delacrétaz, LV; Goutéraux, B.; Hartnoll, SA; Karlsson, A., Theory of collective magnetophonon resonance and melting of a field-induced Wigner solid, Phys. Rev. B, 100 (2019) · doi:10.1103/PhysRevB.100.085140
[95] Brattan, DK; Davison, RA; Gentle, SA; O’Bannon, A., Collective excitations of holographic quantum liquids in a magnetic field, JHEP, 11, 084 (2012) · doi:10.1007/JHEP11(2012)084
[96] Janiszewski, S.; Kaminski, M., Quasinormal modes of magnetic and electric black branes versus far from equilibrium anisotropic fluids, Phys. Rev. D, 93 (2016) · doi:10.1103/PhysRevD.93.025006
[97] Ammon, M.; Grieninger, S.; Jimenez-Alba, A.; Macedo, RP; Melgar, L., Holographic quenches and anomalous transport, JHEP, 09, 131 (2016) · doi:10.1007/JHEP09(2016)131
[98] Ammon, M.; Kaminski, M.; Koirala, R.; Leiber, J.; Wu, J., Quasinormal modes of charged magnetic black branes & chiral magnetic transport, JHEP, 04, 067 (2017) · Zbl 1378.81100 · doi:10.1007/JHEP04(2017)067
[99] Ammon, M., Chiral hydrodynamics in strong external magnetic fields, JHEP, 04, 078 (2021) · doi:10.1007/JHEP04(2021)078
[100] Gromov, A.; Lucas, A.; Nandkishore, RM, Fracton hydrodynamics, Phys. Rev. Res., 2 (2020) · doi:10.1103/PhysRevResearch.2.033124
[101] Kovtun, PK; Starinets, AO, Quasinormal modes and holography, Phys. Rev. D, 72 (2005) · doi:10.1103/PhysRevD.72.086009
[102] Herzog, CP, The hydrodynamics of M-theory, JHEP, 12, 026 (2002) · doi:10.1088/1126-6708/2002/12/026
[103] Edalati, M.; Jottar, JI; Leigh, RG, Shear modes, criticality and extremal black holes, JHEP, 04, 075 (2010) · Zbl 1272.81150 · doi:10.1007/JHEP04(2010)075
[104] Davison, RA; Parnachev, A., Hydrodynamics of cold holographic matter, JHEP, 06, 100 (2013) · Zbl 1342.83117 · doi:10.1007/JHEP06(2013)100
[105] Davison, RA, Momentum relaxation in holographic massive gravity, Phys. Rev. D, 88 (2013) · doi:10.1103/PhysRevD.88.086003
[106] Kaminski, M.; Landsteiner, K.; Mas, J.; Shock, JP; Tarrio, J., Holographic operator mixing and quasinormal modes on the brane, JHEP, 02, 021 (2010) · Zbl 1270.81178 · doi:10.1007/JHEP02(2010)021
[107] Kovtun, P.; Son, DT; Starinets, AO, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett., 94 (2005) · doi:10.1103/PhysRevLett.94.111601
[108] Kovtun, P.; Son, DT; Starinets, AO, Holography and hydrodynamics: diffusion on stretched horizons, JHEP, 10, 064 (2003) · doi:10.1088/1126-6708/2003/10/064
[109] Davison, RA; Goutéraux, B.; Hartnoll, SA, Incoherent transport in clean quantum critical metals, JHEP, 10, 112 (2015) · Zbl 1388.81933 · doi:10.1007/JHEP10(2015)112
[110] Lucas, A., Conductivity of a strange metal: from holography to memory functions, JHEP, 03, 071 (2015) · doi:10.1007/JHEP03(2015)071
[111] Hartnoll, SA; Ramirez, DM; Santos, JE, Entropy production, viscosity bounds and bumpy black holes, JHEP, 03, 170 (2016) · Zbl 1388.83457 · doi:10.1007/JHEP03(2016)170
[112] Alberte, L.; Ammon, M.; Jiménez-Alba, A.; Baggioli, M.; Pujolàs, O., Holographic phonons, Phys. Rev. Lett., 120 (2018) · Zbl 1384.83021 · doi:10.1103/PhysRevLett.120.171602
[113] Alberte, L.; Ammon, M.; Baggioli, M.; Jiménez, A.; Pujolàs, O., Black hole elasticity and gapped transverse phonons in holography, JHEP, 01, 129 (2018) · Zbl 1384.83021 · doi:10.1007/JHEP01(2018)129
[114] Baggioli, M.; Buchel, A., Holographic viscoelastic hydrodynamics, JHEP, 03, 146 (2019) · Zbl 1414.81254
[115] Alberte, L.; Baggioli, M.; Khmelnitsky, A.; Pujolàs, O., Solid holography and massive gravity, JHEP, 02, 114 (2016) · Zbl 1388.83559 · doi:10.1007/JHEP02(2016)114
[116] Alberte, L.; Baggioli, M.; Pujolàs, O., Viscosity bound violation in holographic solids and the viscoelastic response, JHEP, 07, 074 (2016) · Zbl 1390.83150 · doi:10.1007/JHEP07(2016)074
[117] Burikham, P.; Poovuttikul, N., Shear viscosity in holography and effective theory of transport without translational symmetry, Phys. Rev. D, 94 (2016) · doi:10.1103/PhysRevD.94.106001
[118] T. Ciobanu and D. M. Ramirez, Shear hydrodynamics, momentum relaxation, and the KSS bound, arXiv:1708.04997 [INSPIRE].
[119] Iqbal, N.; Liu, H., Universality of the hydrodynamic limit in AdS/CFT and the membrane paradigm, Phys. Rev. D, 79 (2009) · doi:10.1103/PhysRevD.79.025023
[120] Jain, S.; Samanta, R.; Trivedi, SP, The shear viscosity in anisotropic phases, JHEP, 10, 028 (2015) · Zbl 1388.83269 · doi:10.1007/JHEP10(2015)028
[121] S. I. Finazzo, R. Critelli, R. Rougemont and J. Noronha, Momentum transport in strongly coupled anisotropic plasmas in the presence of strong magnetic fields, Phys. Rev. D94 (2016) 054020 [Erratum ibid.96 (2017) 019903] [arXiv:1605.06061] [INSPIRE].
[122] Rebhan, A.; Steineder, D., Violation of the holographic viscosity bound in a strongly coupled anisotropic plasma, Phys. Rev. Lett., 108 (2012) · doi:10.1103/PhysRevLett.108.021601
[123] D. Giataganas, Observables in strongly coupled anisotropic theories, PoSCorfu2012 (2013) 122 [arXiv:1306.1404] [INSPIRE].
[124] Mamo, KA, Holographic RG flow of the shear viscosity to entropy density ratio in strongly coupled anisotropic plasma, JHEP, 10, 070 (2012) · doi:10.1007/JHEP10(2012)070
[125] Blake, M., Universal charge diffusion and the butterfly effect in holographic theories, Phys. Rev. Lett., 117 (2016) · doi:10.1103/PhysRevLett.117.091601
[126] Blake, M., Universal diffusion in incoherent black holes, Phys. Rev. D, 94 (2016) · doi:10.1103/PhysRevD.94.086014
[127] Hartman, T.; Hartnoll, SA; Mahajan, R., Upper bound on diffusivity, Phys. Rev. Lett., 119 (2017) · doi:10.1103/PhysRevLett.119.141601
[128] A. Lucas, Constraints on hydrodynamics from many-body quantum chaos, arXiv:1710.01005 [INSPIRE].
[129] Shenker, SH; Stanford, D., Black holes and the butterfly effect, JHEP, 03, 067 (2014) · Zbl 1333.83111 · doi:10.1007/JHEP03(2014)067
[130] Roberts, DA; Stanford, D.; Susskind, L., Localized shocks, JHEP, 03, 051 (2015) · Zbl 1388.83694 · doi:10.1007/JHEP03(2015)051
[131] Roberts, DA; Swingle, B., Lieb-Robinson bound and the butterfly effect in quantum field theories, Phys. Rev. Lett., 117 (2016) · doi:10.1103/PhysRevLett.117.091602
[132] Lucas, A., Operator size at finite temperature and Planckian bounds on quantum dynamics, Phys. Rev. Lett., 122 (2019) · doi:10.1103/PhysRevLett.122.216601
[133] Davison, RA; Gentle, SA; Goutéraux, B., Slow relaxation and diffusion in holographic quantum critical phases, Phys. Rev. Lett., 123 (2019) · doi:10.1103/PhysRevLett.123.141601
[134] Gu, Y.; Lucas, A.; Qi, X-L, Spread of entanglement in a Sachdev-Ye-Kitaev chain, JHEP, 09, 120 (2017) · Zbl 1382.81181 · doi:10.1007/JHEP09(2017)120
[135] Ling, Y.; Xian, Z-Y, Holographic butterfly effect and diffusion in quantum critical region, JHEP, 09, 003 (2017) · Zbl 1382.81186 · doi:10.1007/JHEP09(2017)003
[136] Gu, Y.; Lucas, A.; Qi, X-L, Energy diffusion and the butterfly effect in inhomogeneous Sachdev-Ye-Kitaev chains, SciPost Phys., 2, 018 (2017) · doi:10.21468/SciPostPhys.2.3.018
[137] Baggioli, M.; Goutéraux, B.; Kiritsis, E.; Li, W-J, Higher derivative corrections to incoherent metallic transport in holography, JHEP, 03, 170 (2017) · Zbl 1377.81151 · doi:10.1007/JHEP03(2017)170
[138] Blake, M.; Donos, A., Diffusion and chaos from near AdS_2horizons, JHEP, 02, 013 (2017) · Zbl 1377.81155 · doi:10.1007/JHEP02(2017)013
[139] Wu, S-F; Wang, B.; Ge, X-H; Tian, Y., Collective diffusion and quantum chaos in holography, Phys. Rev. D, 97 (2018) · doi:10.1103/PhysRevD.97.106018
[140] Li, W.; Lin, S.; Mei, J., Thermal diffusion and quantum chaos in neutral magnetized plasma, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.046012
[141] Ge, X-H; Sin, S-J; Tian, Y.; Wu, S-F; Wu, S-Y, Charged BTZ-like black hole solutions and the diffusivity-butterfly velocity relation, JHEP, 01, 068 (2018) · Zbl 1384.83023 · doi:10.1007/JHEP01(2018)068
[142] Li, W-J; Liu, P.; Wu, J-P, Weyl corrections to diffusion and chaos in holography, JHEP, 04, 115 (2018) · Zbl 1390.81525 · doi:10.1007/JHEP04(2018)115
[143] Jeong, H-S; Ahn, Y.; Ahn, D.; Niu, C.; Li, W-J; Kim, K-Y, Thermal diffusivity and butterfly velocity in anisotropic Q-lattice models, JHEP, 01, 140 (2018) · doi:10.1007/JHEP01(2018)140
[144] Baggioli, M.; Li, W-J, Diffusivities bounds and chaos in holographic Horndeski theories, JHEP, 07, 055 (2017) · Zbl 1380.83186 · doi:10.1007/JHEP07(2017)055
[145] Kim, K-Y; Niu, C., Diffusion and butterfly velocity at finite density, JHEP, 06, 030 (2017) · Zbl 1380.81353
[146] Baggioli, M.; Li, W-J, Universal bounds on transport in holographic systems with broken translations, SciPost Phys., 9, 007 (2020) · doi:10.21468/SciPostPhys.9.1.007
[147] Hartnoll, SA, Theory of universal incoherent metallic transport, Nature Phys., 11, 54 (2015) · doi:10.1038/nphys3174
[148] Policastro, G.; Son, DT; Starinets, AO, The shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett., 87 (2001) · doi:10.1103/PhysRevLett.87.081601
[149] M. Baggioli, S. Grieninger, S. Grozdanov and Z. Lu, Aspects of univalence in holographic axion models, arXiv:2205.06076 [INSPIRE]. · Zbl 1536.83117
[150] Grozdanov, S.; Schalm, K.; Scopelliti, V., Black hole scrambling from hydrodynamics, Phys. Rev. Lett., 120 (2018) · doi:10.1103/PhysRevLett.120.231601
[151] Blake, M.; Lee, H.; Liu, H., A quantum hydrodynamical description for scrambling and many-body chaos, JHEP, 10, 127 (2018) · Zbl 1402.81163 · doi:10.1007/JHEP10(2018)127
[152] Blake, M.; Davison, RA; Vegh, D., Horizon constraints on holographic Green’s functions, JHEP, 01, 077 (2020) · Zbl 1434.83123 · doi:10.1007/JHEP01(2020)077
[153] Grozdanov, S.; Kovtun, PK; Starinets, AO; Tadić, P., The complex life of hydrodynamic modes, JHEP, 11, 097 (2019) · Zbl 1429.83090 · doi:10.1007/JHEP11(2019)097
[154] Ceplak, N.; Ramdial, K.; Vegh, D., Fermionic pole-skipping in holography, JHEP, 07, 203 (2020) · Zbl 1451.83077 · doi:10.1007/JHEP07(2020)203
[155] Ceplak, N.; Vegh, D., Pole-skipping and Rarita-Schwinger fields, Phys. Rev. D, 103 (2021) · doi:10.1103/PhysRevD.103.106009
[156] M. Natsuume and T. Okamura, Holographic chaos, pole-skipping, and regularity, PTEP2020 (2020) 013B07 [arXiv:1905.12014] [INSPIRE]. · Zbl 1483.81124
[157] Natsuume, M.; Okamura, T., Nonuniqueness of Green’s functions at special points, JHEP, 12, 139 (2019) · Zbl 1431.83104 · doi:10.1007/JHEP12(2019)139
[158] Natsuume, M.; Okamura, T., Pole-skipping with finite-coupling corrections, Phys. Rev. D, 100 (2019) · doi:10.1103/PhysRevD.100.126012
[159] Grozdanov, S., On the connection between hydrodynamics and quantum chaos in holographic theories with stringy corrections, JHEP, 01, 048 (2019) · Zbl 1409.83190 · doi:10.1007/JHEP01(2019)048
[160] Grozdanov, S., Bounds on transport from univalence and pole-skipping, Phys. Rev. Lett., 126 (2021) · doi:10.1103/PhysRevLett.126.051601
[161] Liu, Y.; Raju, A., Quantum chaos in topologically massive gravity, JHEP, 12, 027 (2020) · Zbl 1457.83015 · doi:10.1007/JHEP12(2020)027
[162] Abbasi, N.; Tahery, S., Complexified quasinormal modes and the pole-skipping in a holographic system at finite chemical potential, JHEP, 10, 076 (2020) · Zbl 1456.83072 · doi:10.1007/JHEP10(2020)076
[163] Jansen, A.; Pantelidou, C., Quasinormal modes in charged fluids at complex momentum, JHEP, 10, 121 (2020) · Zbl 1456.83043 · doi:10.1007/JHEP10(2020)121
[164] Wu, X., Higher curvature corrections to pole-skipping, JHEP, 12, 140 (2019) · Zbl 1431.83159 · doi:10.1007/JHEP12(2019)140
[165] Abbasi, N.; Tabatabaei, J., Quantum chaos, pole-skipping and hydrodynamics in a holographic system with chiral anomaly, JHEP, 03, 050 (2020) · Zbl 1442.83024 · doi:10.1007/JHEP03(2020)050
[166] Haehl, FM; Rozali, M., Effective field theory for chaotic CFTs, JHEP, 10, 118 (2018) · Zbl 1402.81223 · doi:10.1007/JHEP10(2018)118
[167] Das, S.; Ezhuthachan, B.; Kundu, A., Real time dynamics from low point correlators in 2d BCFT, JHEP, 12, 141 (2019) · Zbl 1431.81118 · doi:10.1007/JHEP12(2019)141
[168] Ramirez, DM, Chaos and pole skipping in CFT_2, JHEP, 12, 006 (2021) · Zbl 1521.81327 · doi:10.1007/JHEP12(2021)006
[169] Ahn, Y.; Jahnke, V.; Jeong, H-S; Kim, K-Y, Scrambling in hyperbolic black holes: shock waves and pole-skipping, JHEP, 10, 257 (2019) · Zbl 1427.83076 · doi:10.1007/JHEP10(2019)257
[170] Ahn, Y.; Jahnke, V.; Jeong, H-S; Kim, K-Y; Lee, K-S; Nishida, M., Pole-skipping of scalar and vector fields in hyperbolic space: conformal blocks and holography, JHEP, 09, 111 (2020) · Zbl 1454.83108 · doi:10.1007/JHEP09(2020)111
[171] Ahn, Y.; Jahnke, V.; Jeong, H-S; Lee, K-S; Nishida, M.; Kim, K-Y, Classifying pole-skipping points, JHEP, 03, 175 (2021) · Zbl 1461.81088 · doi:10.1007/JHEP03(2021)175
[172] C. Choi, M. Mezei and G. Sárosi, Pole skipping away from maximal chaos, arXiv:2010.08558 [INSPIRE].
[173] K.-Y. Kim, K.-S. Lee and M. Nishida, Holographic scalar and vector exchange in OTOCs and pole-skipping phenomena, JHEP04 (2021) 092 [Erratum ibid.04 (2021) 229] [arXiv:2011.13716] [INSPIRE].
[174] Sil, K., Pole skipping and chaos in anisotropic plasma: a holographic study, JHEP, 03, 232 (2021) · doi:10.1007/JHEP03(2021)232
[175] Abbasi, N.; Kaminski, M., Constraints on quasinormal modes and bounds for critical points from pole-skipping, JHEP, 03, 265 (2021) · Zbl 1461.83052 · doi:10.1007/JHEP03(2021)265
[176] Kim, K-Y; Lee, K-S; Nishida, M., Regge conformal blocks from the Rindler-AdS black hole and the pole-skipping phenomena, JHEP, 11, 020 (2021) · Zbl 1521.83127 · doi:10.1007/JHEP11(2021)020
[177] Kim, K-Y; Lee, K-S; Nishida, M., Construction of bulk solutions for towers of pole-skipping points, Phys. Rev. D, 105 (2022) · doi:10.1103/PhysRevD.105.126011
[178] Blake, M.; Davison, RA, Chaos and pole-skipping in rotating black holes, JHEP, 01, 013 (2022) · Zbl 1521.83092 · doi:10.1007/JHEP01(2022)013
[179] S. Mahish and K. Sil, Quantum information scrambling and quantum chaos in little string theory, arXiv:2202.05865 [INSPIRE]. · Zbl 1522.81107
[180] Hernandez, J.; Kovtun, P., Relativistic magnetohydrodynamics, JHEP, 05, 001 (2017) · Zbl 1380.83108 · doi:10.1007/JHEP05(2017)001
[181] Y. Ahn et al., Dynamical gauge fields in holography and hydrodynamics, work in progress, to appear soon.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.