×

Magnetothermoelectric DC conductivities from holography models with hyperscaling factor in Lifshitz spacetime. (English) Zbl 1373.78408

Summary: We investigate an Einstein-Maxwell-Dilaton-Axion holographic model and obtain two branches of a charged black hole solution with a dynamic exponent and a hyperscaling violation factor when a magnetic field presents. The magnetothermoelectric DC conductivities are then calculated in terms of horizon data by means of holographic principle. We find that linear temperature dependence resistivity and quadratic temperature dependence inverse Hall angle can be achieved in our model. The well-known anomalous temperature scaling of the Nernst signal and the Seebeck coefficient of cuprate strange metals are also discussed.

MSC:

78A55 Technical applications of optics and electromagnetic theory
82C70 Transport processes in time-dependent statistical mechanics
82D35 Statistical mechanics of metals
83C22 Einstein-Maxwell equations
83C57 Black holes

References:

[1] Maldacena, J. M., The large \(N\) limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys., 2, 231-252 (1998) · Zbl 0914.53047
[2] Hartnoll, S. A.; Lucas, A.; Sachdev, S., Holographic quantum matter · Zbl 1407.82005
[3] Hartnoll, S. A., Horizons, holography and condensed matter · Zbl 1269.83006
[4] McGreevy, J., Holographic duality with a view toward many-body physics · Zbl 1216.81118
[5] Green, A. G., An introduction to gauge gravity duality and its application in condensed matter
[6] Herzog, C. P., Lectures on holographic superfluidity and superconductivity, J. Phys. A, 42, Article 343001 pp. (2009) · Zbl 1180.82218
[7] Koroteev, P.; Libanov, M., On existence of self-tuning solutions in static braneworlds without singularities, J. High Energy Phys., 0802, Article 104 pp. (2008)
[8] Kachru, S.; Liu, X.; Mulligan, M., Gravity duals of Lifshitz-like fixed points, Phys. Rev. D, 78, Article 106005 pp. (2008)
[9] Alishahiha, M.; ó Colgáin, E.; Yavartanoo, H., Charged black branes with hyperscaling violating factor, J. High Energy Phys., 11, Article 137 pp. (2012)
[10] Goldstein, K.; Kachru, S.; Prakash, S.; Trivedi, S. P., Holography of charged dilaton black holes, J. High Energy Phys., 1008, Article 078 pp. (2010) · Zbl 1290.83038
[11] Goldstein, K.; Iizuka, N.; Kachru, S.; Prakash, S.; Trivedi, S. P.; Westphal, A., Holography of dyonic dilaton black branes, J. High Energy Phys., 1010, Article 027 pp. (2010) · Zbl 1291.83069
[12] Cadoni, M.; Pani, P., Holography of charged dilatonic black branes at finite temperature, J. High Energy Phys., 1104, Article 049 pp. (2011)
[13] Tarrio, J.; Vandoren, S., Black holes and black branes in Lifshitz spacetimes, J. High Energy Phys., 1109, Article 017 pp. (2011) · Zbl 1301.81156
[14] Perlmutter, E., Domain wall holography for finite temperature scaling solutions, J. High Energy Phys., 1102, Article 013 pp. (2011) · Zbl 1294.81124
[15] Bertoldi, G.; Burrington, B. A.; Peet, A. W., Thermal behavior of charged dilatonic black branes in AdS and UV completions of Lifshitz-like geometries, Phys. Rev. D, 82, Article 106013 pp. (2010)
[16] Iizuka, N.; Kundu, N.; Narayan, P.; Trivedi, S. P., Holographic Fermi and non-Fermi liquids with transitions in dilaton gravity · Zbl 1306.81114
[17] Pal, S. S., Fermi-like liquid from Einstein-DBI-Dilaton system, J. High Energy Phys., 1304, Article 007 pp. (2013) · Zbl 1342.83032
[18] Zhou, Z. H.; Wu, J. P.; Ling, Y., DC and Hall conductivity in holographic massive Einstein-Maxwell-Dilaton gravity, J. High Energy Phys., 08, Article 067 pp. (2015) · Zbl 1388.83060
[19] Ross, Simon F.; Saremi, Omid, Holographic stress tensor for non-relativistic theories, J. High Energy Phys., 09, Article 009 pp. (2009)
[20] Chemissany, W.; Papadimitriou, I., Lifshitz holography: the whole shebang, J. High Energy Phys., 01, Article 052 pp. (2015)
[21] Horowitz, G. T.; Santos, J. E.; Tong, D., Optical conductivity with holographic lattices, J. High Energy Phys., 1207, Article 168 pp. (2012) · Zbl 1397.83154
[22] Horowitz, G. T.; Santos, J. E.; Tong, D., Further evidence for lattice-induced scaling, J. High Energy Phys., 11, Article 102 pp. (2012)
[23] Horowitz, G. T.; Santos, J. E., General relativity and the cuprates, J. High Energy Phys., 06, Article 087 pp. (2013) · Zbl 1342.83084
[24] Ling, Y.; Liu, P.; Wu, J. P., A novel insulator by holographic Q-lattices, J. High Energy Phys., 02, Article 075 pp. (2016) · Zbl 1388.83295
[25] Chesler, P.; Lucas, A.; Sachdev, S., Conformal field theories in a periodic potential: results from holography and field theory, Phys. Rev. D, 89, Article 026005 pp. (2014)
[26] Donos, A.; Gauntlett, J. P., The thermoelectric properties of inhomogeneous holographic lattices, J. High Energy Phys., 01, Article 035 pp. (2015)
[27] Donos, A.; Gauntlett, J. P., Holographic Q-lattices, J. High Energy Phys., 04, Article 040 pp. (2014)
[28] Donos, A.; Gauntlett, J. P., Novel metals and insulators from holography
[29] Andrade, T.; Withers, B., A simple holographic model of momentum relaxation, J. High Energy Phys., 05, Article 101 pp. (2014)
[30] Goutŕaux, B., Charge transport in holography with momentum dissipation, J. High Energy Phys., 04, Article 181 pp. (2014)
[31] Taylor, M.; Woodhead, W., Inhomogeneity simplified
[32] Kim, K. Y.; Kim, K. K.; Seo, Y.; Sin, S. J., Coherent/incoherent metal transition in a holographic model, J. High Energy Phys., 12, Article 170 pp. (2014)
[33] Iizuka, N.; Maeda, K., Study of anisotropic black branes in asymptotically anti-de Sitter
[34] Cheng, L.; Ge, X. H.; Sin, S. J., Anisotropic plasma at finite \(U(1)\) chemical potential, J. High Energy Phys., 07, Article 083 pp. (2014)
[35] Cheng, L.; Ge, X. H.; Sun, Z. Y., Thermoelectric DC conductivities with momentum dissipation from higher derivative gravity, J. High Energy Phys., 04, Article 135 pp. (2015) · Zbl 1388.83575
[36] Ge, X. H.; Ling, Y.; Niu, C.; Sin, S. J., Thermoelectric conductivities, shear viscosity, and stability in an anisotropic linear axion model, Phys. Rev. D, 92, Article 106005 pp. (2015)
[37] Ge, X. H.; Sin, S. J.; Wu, S. F., Universality of dc electrical conductivity from holography, Phys. Lett. B, 767, 63 (2017) · Zbl 1404.83104
[38] Ge, X. H.; Tian, Y.; Wu, S. Y.; Wu, S. F., Hyperscaling violating black hole solutions and magneto-thermoelectric DC conductivities in holography, Phys. Rev. D, 96, Article 046015 pp. (2017)
[39] Cremonini, S.; Liu, H.-S.; Lü, H.; Pope, C. N., DC conductivities from non-relativistic scaling geometries with momentum dissipation · Zbl 1378.83016
[40] Ge, X. H.; Tian, Y.; Wu, S. Y.; Wu, S. F.; Wu, S. F., Linear and quadratic in temperature resistivity from holography, J. High Energy Phys., 11, Article 128 pp. (2016) · Zbl 1390.83197
[41] Andrade, T., A simple model of momentum relaxation in Lifshitz holography
[42] Vegh, D., Holography without translational symmetry
[43] Davison, R. A., Momentum relaxation in holographic massive gravity, Phys. Rev. D, 88, Article 086003 pp. (2013)
[44] Blake, M.; Tong, D., Universal resistivity from holographic massive gravity, Phys. Rev. D, 88, Article 106004 pp. (2013)
[45] Blake, M.; Tong, D.; Vegh, D., Holographic lattices give the graviton a mass, Phys. Rev. Lett., 112, Article 071602 pp. (2014)
[46] Hu, Y. P.; Zhang, H., Misner-sharp mass and the unified first law in massive gravity, Phys. Rev. D, 92, Article 024006 pp. (2015)
[47] Zhang, H.; Li, X. Z., Ghost free massive gravity with singular reference metrics, Phys. Rev. D, 93, Article 124039 pp. (2016)
[48] Wu, S. F.; Ge, X. H.; Liu, Y. X., First law of black hole mechanics in variable background fields, Gen. Relativ. Gravit., 49, 85 (2017) · Zbl 1383.83083
[49] Baggioli, M.; Pujolas, O., On effective holographic Mott insulators
[50] Alberte, L.; Baggioli, M.; Khmelnitsky, A.i.; Pujolas, O., Solid holography and massive gravity · Zbl 1388.83559
[51] Baggioli, M., Gravity, holography and applications to condensed matter, Ph.D. thesis
[52] Donos, A.; Gauntlett, J. P., Thermoelectric DC conductivities from black hole horizons, J. High Energy Phys., 11, Article 081 pp. (2014)
[53] Blake, M.; Donos, A., Quantum critical transport and the Hall angle, Phys. Rev. Lett., 114, Article 021601 pp. (2015)
[54] Blake, M.; Donos, A.; Lohitsiri, N., Magnetothermoelectric response from holography, J. High Energy Phys., 08, Article 124 pp. (2015) · Zbl 1388.83187
[55] Kim, K.-Y.; Kim, K.-K.; Seo, Y.; Sin, S.-J., Thermoelectric conductivities at finite magnetic field and the Nernst effect · Zbl 1388.83054
[56] Hartnoll, S. A.; Kovtun, P., Hall conductivity from dyonic black holes, Phys. Rev. D, 76, Article 066001 pp. (2007)
[57] Hartnoll, S. A.; Kovtun, P. K.; Mueller, M.; Sachdev, S., Theory of the Nernst effect near quantum phase transitions in condensed matter, and in dyonic black holes, Phys. Rev. B, 76, Article 144502 pp. (2007)
[58] Hartnoll, S. A.; Herzog, C. P., Ohm’s Law at strong coupling: S duality and the cyclotron resonance, Phys. Rev. D, 76, Article 106012 pp. (2007)
[59] Tian, Y.; Ge, X. H.; Wu, S. F., Wilsonian RG flow approach to holographic transport with momentum dissipation, Phys. Rev. D, 96, Article 046011 pp. (2017)
[60] Wang, Y.; Li, L.; Ong, N. P., Nernst effect in high-\(T_c\) superconductors, Phys. Rev. B, 73, Article 024510 pp. (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.