×

Real algebraic geometry with a view toward Koopman operator methods. Abstracts from the workshop held March 12–17, 2023. (English) Zbl 1525.00020

Summary: This workshop was dedicated to the newest developments in real algebraic geometry and their interaction with convex optimization and operator theory. A particular effort was invested in exploring the interrelations with the Koopman operator methods in dynamical systems and their applications. The presence of researchers from different scientific communities enabled an interesting dialogue leading to new exciting and promising synergies.

MSC:

00B05 Collections of abstracts of lectures
00B25 Proceedings of conferences of miscellaneous specific interest
14-06 Proceedings, conferences, collections, etc. pertaining to algebraic geometry
14Pxx Real algebraic and real-analytic geometry
12D15 Fields related with sums of squares (formally real fields, Pythagorean fields, etc.)
13J30 Real algebra
14M12 Determinantal varieties
14Q30 Computational real algebraic geometry
37M25 Computational methods for ergodic theory (approximation of invariant measures, computation of Lyapunov exponents, entropy, etc.)
44A60 Moment problems
46N10 Applications of functional analysis in optimization, convex analysis, mathematical programming, economics
47A57 Linear operator methods in interpolation, moment and extension problems
49M29 Numerical methods involving duality
49N35 Optimal feedback synthesis
52A20 Convex sets in \(n\) dimensions (including convex hypersurfaces)
52A27 Approximation by convex sets
52A41 Convex functions and convex programs in convex geometry
90C22 Semidefinite programming
90C25 Convex programming
90C26 Nonconvex programming, global optimization
93B28 Operator-theoretic methods
Full Text: DOI

References:

[1] J. Bochnak, M. Coste and M.-F. Roy, Real algebraic geometry, Translaltion from the French, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 36 (1998) Springer, Berlin. · Zbl 0912.14023
[2] M. Knebusch and C. Scheiderer, Real algebra. A first course, Translated from the German and with contributions by T. Unger, Universitext, (2022), Springer, Cham. · Zbl 1505.13001
[3] M. Marshall, Positive polynomials and sums of squares, Mathematical Surveys and Mono-graphs, 146, (2008), American Mathematical Society (AMS), Providence, RI. · Zbl 1169.13001
[4] A. Prestel, Alexander and C. N. Delzell, Positive polynomials. From Hilbert’s 17th problem to real algebra, Springer Monographs in Mathematics,(2001), Springer, Berlin. · Zbl 0987.13016
[5] V. Powers, Certificates of positivity for real polynomials. Theory, practice, and applications, Developments in Mathematics, 69, (2021), Springer, Cham. References · Zbl 1483.14001
[6] B. O. Koopman. Hamiltonian systems and transformation in Hilbert space. Proceedings of the National Academy of Sciences of the United States of America, 17 (1931), 315. · JFM 57.1010.02
[7] A. Mauroy, I. Mezic. Global stability analysis using the eigenfunctions of the Koopman operator. IEEE Transactions on Automatic Control, 61 (2016), 3356-3369 · Zbl 1359.93372
[8] K.-J. Engel, R. Nagel One-parameter semigroups for linear evolution equations . Springer Science & Business Media, 194 (1999)
[9] I. Mezic. Spectrum of the Koopman operator, spectral expansions in functional spaces, and state-space geometry. Journal of Nonlinear Science, 30.5 (2020), 2091-2145 · Zbl 1467.37085
[10] A. Mauroy, I. Mezic. On the use of Fourier averages to compute the global isochrons of (quasi) periodic dynamics. Chaos, 22 (2012), 033112 · Zbl 1319.70024
[11] A. Mauroy, I. Mezic, J. Moehlis. Isostables, isochrons, and Koopman spectrum for the action-angle representation of stable fixed point dynamics. Physica D: Nonlinear Phenom-ena, 261 (2013), 19-30 · Zbl 1284.37047
[12] V. Kühner. What can Koopmanism do for attractors in dynamical systems? The Journal of Analysis, 29 (2021), 449-471 · Zbl 1480.37039
[13] C. Mugisho and A. Mauroy. Uniform global stability of switched nonlinear systems in the Koopman operator framework. arXiv:2301.05529v1 (2023) References
[14] P. Moustrou, H. Naumann, C. Riener, T. Theobald, and H. Verdure, Symmetry reduction in AM/GM-based optimization, SIAM J. Optim. 32 (2022), 765-785. · Zbl 1487.14124
[15] R. Murray, V. Chandrasekaran, and A. Wierman, Signomial and polynomial optimization via relative entropy and partial dualization, Math. Program. Comput. 13 (2021), 257-295. · Zbl 1530.90071
[16] R. Murray, H. Naumann, and T. Theobald, Sublinear circuits and the constrained signomial nonnegativity problem, Math. Program. 198 (2023), 471-505. · Zbl 1517.14039
[17] T. Theobald, Relative entropy methods in constrained polynomial and signomial optimiza-tion, to appear in M. Kočvara, B. Mourrain, C. Riener (eds.), “Polynomial Optimization, Moments, and Applications”, Springer, 2023.
[18] L. Baldi and B. Mourrain, On the Effective Putinar’s Positivstellensatz and Moment Approximation, Mathematical Programming, Series A (2022), https://doi.org/10.1007/s10107-022-01877-6. · Zbl 1518.14080 · doi:10.1007/s10107-022-01877-6
[19] L. Baldi, B. Mourrain, and A. Parusinski, On Lojasiewicz inequalities and the effective Putinar’s Positivstellensatz, 2022, https://arxiv.org/abs/2212.09551.
[20] L. Baldi and L. Slot, Degree bounds for Putinar’s Positivstellensatz on the hypercube, 2023, https://arxiv.org/abs/2302.12558 .
[21] K. Fang and H. Fawzi, The sum-of-squares hierarchy on the sphere and applications in quantum information theory, Math. Program. 190 (2021), 331-360. · Zbl 1478.90077
[22] F. Kirchner and E. de Klerk. Convergence rates of RLT and Lasserre-type hierarchies for the generalized moment problem over the simplex and the sphere. Optimization Letters, 16 (2022), 2191-2208. · Zbl 1502.90118
[23] J. B. Lasserre, Global optimization with polynomials and the problem of moments, SIAM J. Optim. 11 (2001), no. 3, 796-817. · Zbl 1010.90061
[24] Lasserre, J.B. A semidefinite programming approach to the generalized problem of moments. Mathematical Programming Series B 112 (2008), 65-92 · Zbl 1145.90049
[25] J. Nie and M. Schweighofer, On the complexity of Putinar’s Positivstellensatz, J. Complex. 23 (2007), no. 1, 135-150. · Zbl 1143.13028
[26] M. Putinar, Positive polynomials on compact semi-algebraic sets, Indiana Univ. Math. J. 42 (1993), 969-984. · Zbl 0796.12002
[27] K. Schmüdgen, The K-moment problem for compact semi-algebraic sets., Mathematische Annalen 289 (1991), no. 2, 203-206. · Zbl 0744.44008
[28] P. J. C. Dickinson and J. Povh, On an extension of Pólya’s Positivstellensatz, J. Global Optim., 61 (2014), pp. 615-625. · Zbl 1379.11037
[29] J. B. Lasserre, A new look at nonnegativity on closed sets and polynomial optimization, SIAM J. Optim., 21 (2011), pp. 864-885. · Zbl 1242.90176
[30] R. Murray, V. Chandrasekaran, and A. Wierman, Newton polytopes and relative entropy optimization, Found. Comput. Math., 21 (2021), pp. 1703-1737. · Zbl 1483.90121
[31] Aubin, Jean-Pierre and Frankowska, Hélène, Set-Valued Analysis, Modern Birkhäuser Clas-sics (1990) · Zbl 0713.49021
[32] Bonalli, Riccardo and Bonnet, Benoît, First-Order Pontryagin Maximum Principle for Risk-Averse Stochastic Optimal Control Problems, arXiv preprint arXiv:2204.03036 (2022). · Zbl 1539.93198
[33] Bonnet, Benoît and Frankowska, Hélène, Differential Inclusions in Wasserstein Spaces: The Cauchy-Lipschitz Framework, Journal of Differential Equations 271 (2021), 594-637. · Zbl 1454.49018
[34] Bonnet, Benoît and Frankowska, Hélène, Necessary Optimality Conditions for Optimal Con-trol Problems in Wasserstein Spaces, Applied Mathematics and Optimization 84 (2021), 1281-1330. · Zbl 1486.30151
[35] Brunton, Steven L and Budišić, Marko and Kaiser, Eurika and Kutz, J Nathan, Modern Koopman theory for dynamical systems, SIAM Review 64:4 (2022), 229-340. · Zbl 1497.37105
[36] Clarke, Francis, Functional Analysis, Calculus of Variations and Optimal Control, Springer 264 (2023). · Zbl 1277.49001
[37] Goswami, Debdipta and Paley, Derek A, Global bilinearization and controllability of control-affine nonlinear systems: A Koopman spectral approach, In 2017 IEEE 56th Annual Con-ference on Decision and Control (CDC) (2017), 6107-6112.
[38] Korda, Milan and Mezić, Igor, Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control, Automatica 93 (2018), 149-160. · Zbl 1400.93079
[39] Peitz, Sebastian and Klus, Stefan, Koopman operator-based model reduction for switched-system control of PDEs Automatica 106 (2019), 184-191. · Zbl 1429.93043
[40] Proctor, Joshua L and Brunton, Steven L and Kutz, J Nathan, Generalizing Koopman theory to allow for inputs and control, SIAM Journal on Applied Dynamical Systems, 17:1 (2018), 909-930. · Zbl 1390.93226
[41] Vinter, Robert B, Optimal Control, Birkhäuser Basel (2000).
[42] T. Eisner, et al, Operator theoretic aspects of ergodic theory, Springer, 2015. · Zbl 1353.37002
[43] M. Korda, D. Henrion, and I. Mezić, Convex computation of extremal invariant measures of nonlinear dynamical systems and Markov processes, Journal of Nonlinear Science 31 (2021): 1-26. · Zbl 1467.37080
[44] J. B. Lasserre, Moments, positive polynomials and their applications, Vol. 1., World Scien-tific, 2009.
[45] D. Henrion, Semidefinite characterisation of invariant measures for one-dimensional dis-crete dynamical systems, Kybernetika 48.6 (2012): 1089-1099. · Zbl 1255.37002
[46] Lorenzo Baldi and Bernard Mourrain. On the Effective Putinar’s Positivstellensatz and Moment Approximation. Mathematical Programming, Series A, 2022. · Zbl 1518.14080
[47] Lorenzo Baldi, Bernard Mourrain, and Adam Parusinski. On Lojasiewicz Inequalities and the Effective Putinar’s Positivstellensatz. working paper or preprint, December 2022.
[48] Kun Fang and Hamza Fawzi. The sum-of-squares hierarchy on the sphere and applications in quantum information theory. Mathematical Programming, 190(1-2):331-360, July 2020. · Zbl 1478.90077
[49] Monique Laurent and Lucas Slot. An effective version of Schmüdgen’s positivstellensatz for the hypercube. Optimization Letters, 17(3):515-530, 2022. · Zbl 1515.90093
[50] Jiawang Nie and Markus Schweighofer. On the complexity of Putinar’s Positivstellensatz. Journal of Complexity, 23(1):135-150, 2007. · Zbl 1143.13028
[51] Victoria Powers and Bruce Reznick. A new bound for Pólya’s Theorem with applications to polynomials positive on polyhedra. Journal of Pure and Applied Algebra, 164(1):221-229, 2001. · Zbl 1075.14523
[52] Lucas Slot. Sum-of-squares hierarchies for polynomial optimization and the Christoffel-Darboux kernel. SIAM Journal on Optimization, 32(4):2612-2635, 2022. References · Zbl 1507.90124
[53] L. Baldi, B. Mourrain, On the Effective Putinar’s Positivstellensatz and Moment Approxi-mation, Mathematical Programming (2022). · Zbl 1518.14080
[54] L. Baldi, B. Mourrain, A. Parusińki, On Lojasiewicz Inequalities and the Effective Putinar’s Positivstellensatz, preprint, arXiv:2212.09551 (2022).
[55] L. Baldi, L. Slot, Degree bounds for Putinar’s Positivstellensatz on the hypercube, preprint, arXiv:2302.12558 (2023).
[56] M. Laurent, L. Slot, An effective version of Schmüdgen’s Positivstellensatz for the hypercube, Optimization Letters, 17 (2023), 515-530. · Zbl 1515.90093
[57] C. Scheiderer, Non-existence of degree bounds for weighted sums of squares representations, Journal of Complexity, 21 (2005), 823-844. · Zbl 1093.13024
[58] G. Stengle, Complexity Estimates for the Schmüdgen Positivstellensatz, Jouranl of Com-plexity, 17 (1996), 167-174. · Zbl 0889.14025
[59] Pure Koopmanism Rainer Nagel We start from a topological dynamical system (K, ϕ), where K is a compact space and ϕ : K → K is continuous. To this object we associate its “Koopman lineariza-tion” (C(K), T ϕ ), where C(K) is the Banach algebra of all C-valued continuous References
[60] N. Edeko, A. Jamneshan, H. Kreidler A Peter-Weyl theorem for compact group bun-dles and the geometric representation of relatively ergodic compact extensions, arxiv: https://arxiv.org/pdf/2302.13630.pdf (2023).
[61] T. Eisner, B. Farkas, M. Haase, R. Nagel, Operator Theoretic Aspects of Ergodic Theory, Springer GTM volume 272 (2015). · Zbl 1353.37002
[62] K. V. Küster, Topological Dynamics via Structured Koopman Subsystems, PhD thesis, Uni-versity of Tuebingen (2021).
[63] Maria Infusino, Salma Kuhlmann, Patrick Michalski, Moment problem for algebras gener-ated by a nuclear space, https://arxiv.org/abs/2301.12949. References · Zbl 1493.44008
[64] L. Gårding: Linear hyperbolic partial differential equations with constant coefficients, Acta Math. 85 (1951), 1-62 · Zbl 0045.20202
[65] J.W. Helton, V. Vinnikov: Linear matrix inequality representation of sets, Comm. Pure Appl. Math. 60 (2007), no. 5, 654-674 · Zbl 1116.15016
[66] S. Poljak, D. Turzík: A note on sticky matroids, Discrete Math. 42 (1982), no. 1, 119-123 · Zbl 0491.05020
[67] S. Poljak, D. Turzík: Amalgamation over uniform matroids, Czechoslovak Math. J. 34(109) (1984), no. 2, 239-246 · Zbl 0553.05029
[68] M. Schweighofer: Spectrahedral relaxations of hyperbolicity cones, preprint [https://arxiv.org/abs/1907.13611 ] References
[69] R. Chaves, Polynomial Bell inequalities, Phys. Rev. Lett. 116 (2016) 010402. · Zbl 1356.81098
[70] J. W. Helton, S. McCullough, A Positivstellensatz for non-commutative polynomials, Trans. Amer. Math. Soc. 356 (2004) 3721-3737. · Zbl 1071.47005
[71] D. Henrion, J.-B. Lasserre, Convergent relaxations of polynomial matrix inequalities and static output feedback, IEEE Trans. Automat. Control 51 (2006) 192-202. · Zbl 1366.93180
[72] Z. Ji, A. Natarajan, T. Vidick, J. Wright, H. Yuen, MIP* = RE, Commun. ACM 64 (2021) 131-138. · Zbl 1503.68075
[73] I. Klep, J. E. Pascoe, J. Volčič, Positive univariate trace polynomials, J. Algebra 579 (2021), 303-317. · Zbl 1468.13057
[74] I. Klep, V. Magron, J. Volčič, Optimization over trace polynomials, Ann. Henri Poincaré 23 (2022) 67-100. · Zbl 1483.90106
[75] I. Klep, V. Magron, J. Volčič, J. Wang, State polynomials: positivity, optimization and nonlinear Bell inequalities, arXiv:2301.12513.
[76] I. Klep,Š.Špenko, J. Volčič, Positive trace polynomials and the universal Procesi-Schacher conjecture, Proc. Lond. Math. Soc. 117 (2018) 1101-1134. · Zbl 1433.16026
[77] M. Marshall, Positive polynomials and sums of squares, Mathematical Surveys and Mono-graphs 146, American Mathematical Society, Providence, RI, 2008.
[78] S. Pironio, M. Navascués, A. Acín, Convergent relaxations of polynomial optimization prob-lems with noncommuting variables, SIAM J. Optim. 20 (2010) 2157-2180. · Zbl 1228.90073
[79] V. Pozsgay, F. Hirsch, C. Branciard, N. Brunner, Covariance Bell inequalities, Phys. Rev. A 96 (2017) 062128.
[80] C. Procesi, The invariant theory of n × n matrices, Adv. Math. 19 (1976) 306-381. References · Zbl 0331.15021
[81] P. Mohajerin Esfahani, T. Sutter, D. Kuhn and J. Lygeros, From Infinite to Finite Programs: Explicit Error Bounds with an Application to Approximate Dynamic Programming, SIAM Journal on Optimization, 28 (2018).
[82] P. Mohajerin Esfahani, T. Sutter and J. Lygeros, Performance Bounds for the Scenario Approach and an Extension to a Class of Non-convex Programs, IEEE Transactions on Automatic Control, 60 (2015). · Zbl 1360.90251
[83] M. D. Choi, T. Y. Lam, and B. Reznick: Sums of Squares of Real Polynomials, In K-Theory and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras, Part 2, volume 58 of Proc. Sympos. Pure Math., pages 103 -126. Amer. Math. Soc., 1995. · Zbl 0821.11028
[84] C. Goel, S. Hess, and S. Kuhlmann: Intermediate Cones between the Cones of Positive Semidefinite Forms and Sums of Squares, arXiv: 2303.13178 (2023).
[85] Choi, M. D. and T. Y. Lam, Extremal positive semidefinite forms, Math. Ann. 231 (1977), 1-18, MR0498384 (58 #16512). · Zbl 0347.15009
[86] Choi, M. D., Z. D. Dai, T. Y. Lam and B. Reznick, The pythagoras number of some affine al-gebras and local algebras, J. Reine Angew. Math. 336 (1982), 45-82, MR0671321 (84f:12012). · Zbl 0499.12018
[87] Choi, M. D., T. Y. Lam and B. Reznick, Even symmetric sextics, Math. Z., 195 (1987), 559-580, MR0900345 (88j:11019). · Zbl 0654.10024
[88] Reznick, B., Extremal psd forms with few terms, Duke Math. J., 45 (1978), 363-374, MR0480338 (58 #511). · Zbl 0395.10037
[89] Reznick, B., On Hilbert’s construction of positive polynomials, arXiv:0707.2156.
[90] Scheiderer, C., A Positivstellensatz for projective real varieties, Manuscripta Math., 138 (2012), 73-88, MR2898748. · Zbl 1247.14061
[91] Stengle, G. Integral solution of Hilbert’s Seventeenth Problem, Math. Ann., 246 (1979), 33-39, MR0554130 (81c:12035). · Zbl 0403.10008
[92] M. Ghasemi, S. Kuhlmann, M. Marshall, Application of Jacobi’s representation theorem to locally multiplicatively convex topological R-algebras, J. Funct. Anal. 266 (2014), no. 2, 1041-1049. · Zbl 1315.46051
[93] M. Infusino, S. Kuhlmann, T. Kuna, P. Michalski, Projective limit techniques for the infinite dimensional moment problem, Integral Equations Operator Theory 94 (2022), no. 2, Paper no. 12, 44 pp. · Zbl 1493.44008
[94] M. Infusino, S. Kuhlmann, T. Kuna, P. Michalski, An intrinsic characterization of mo-ment functionals in the compact case, International Mathematics Research Notices, Issue 3 (2023), 2281-2303. · Zbl 1517.44004
[95] T. Jacobi, A representation theorem for certain partially ordered commutative rings”, Math. Z. 237 (2001), no. 2, 259-273. · Zbl 0988.54039
[96] M. Marshall, Positive polynomials and sums of squares, Math. Surveys Monogr. 146, Amer. Math. Soc. Providence, RI, 2008. · Zbl 1169.13001
[97] K. Schmüdgen, The moment problem, Grad. Texts in Math. 277, Springer, Cham 2017. References · Zbl 1383.44004
[98] S. Das and D. Giannakis, On harmonic Hilbert spaces on compact abelian groups, J. Fourier Anal. Appl. 29 (2023), 12. · Zbl 1515.43002
[99] S. Das, D. Giannakis, and J. Slawinska, Reproducing kernel Hilbert space compactification of unitary evolution groups, Appl. Comput. Harmon. Anal. (2021), 54 (2021), 75-136. · Zbl 1473.37101
[100] T. Eisner, B. Farkas, M. Haase, and R. Nagel, Operator Theoretic Aspects of Ergodic Theory, Springer (2015). · Zbl 1353.37002
[101] D. Giannakis, A. Ourmazd, P. Pfeffer, J. Schumacher, and J. Slawinska, Embedding classical dynamics in a quantum computer, Phys. Rev. A, 105 (2022), 052404. References
[102] Z. Ji, A. Natarajan, T. Vidick, J. Wright, H. Yuen: MIP* = RE, Communications of the ACM 64 (2021) 131-138; arXiv:2001.04383 · Zbl 1503.68075
[103] I. Klep, C. Scheiderer, J. Volčič: Globally trace-positive noncommutative polynomials and the unbounded tracial moment problem, to appear in Math. Ann.; arXiv:2205.05959
[104] I. Klep, M. Schweighofer: Connes’ embedding conjecture and sums of hermitian squares, Adv. Math. 217 (2008) 1816-1837 · Zbl 1184.46055
[105] J. B. Lasserre: A sum of squares approximation of nonnegative polynomials, SIAM J. Optim. 16 (2006) 751-765 · Zbl 1129.12003
[106] R. Quarez: Trace-positive non-commutative polynomials, Proc. Amer. Math. Soc. 143 (2015) 3357-3370 · Zbl 1396.16017
[107] G. Averkov, Optimal size of linear matrix inequalities in semidefinite approaches to poly-nomial optimization, SIAM J. Appl. Algebra Geometry 3 (2019), 128-151. · Zbl 1420.90043
[108] M. D. Choi and T. Y. Lam, Extremal positive semidefinite forms, Math. Ann. 231 (1977), no. 1, 1-18. · Zbl 0347.15009
[109] M. Dressler, Sums of nonnegative circuit polynomials: geometry and optimization, Ph.D. thesis, Goethe-Universität Frankfurt am Main, 2018.
[110] D. Hilbert,Über die Darstellung definiter Formen als Summe von Formenquadraten, Math. Ann. 32 (1888), 342-350. · JFM 20.0198.02
[111] S. Iliman and T. de Wolff, Amoebas, nonnegative polynomials and sums of squares supported on circuits, Res. Math. Sci. 3 (2016), 3:9. · Zbl 1415.11071
[112] T. Motzkin, The arithmetic-geometric inequalities, Inequalities (Proc. Sympos. Wright-Patterson Air Force Base, Ohio, 1965), Academic Press, 1967.
[113] R. M. Robinson, Some definite polynomials which are not sums of squares of real polyno-mials, Notices Amer. Math. Soc. 16 (1969), no. 3, 554. References
[114] Konrad Schmüdgen and Matthias Schötz, Positivstellensätze for semirings, Arxiv 2207.02748, 35 pp..
[115] T. Eisner, B. Farkas, M. Haase, R. Nagel, Operator Theoretic Aspects of Ergodic Theory, Springer (2015), 332-350. · Zbl 1353.37002
[116] P. Halmos, J. von Neumann, Operator methods in classical mechanics, II. Ann. of. Math. (2) 43 (1942), 332-350. · Zbl 0063.01888
[117] P. Hermle, H. Kreidler, A Halmos-von Neumann Theorem for Actions of General Groups (2022), arxiv: https://arxiv.org/pdf/2204.07093.pdf. · Zbl 1527.37002
[118] A. Joyal, R. Street, An introduction to Tannaka duality and quantum groups, In Category Theory, Springer (1990), 411-492. · Zbl 0745.57001
[119] Nagaev, S.V.: Some limit theorems for stationary Markov chains. Theory Probab. Appl. 2(4), 378-406 (1957).
[120] Rousseau-Egele, J.: Un théoreme de la limite locale pour une classe de transformations dilatantes et monotones par morceaux. Ann. Probab. 11, 772-788 (1983). · Zbl 0518.60033
[121] Guivarc’h, Y., Hardy, J.: Théorèmes limites pour une classe de chaînes de markov et appli-cations aux difféomorphismes d’anosov. Annales de l’IHP Probabilités Et Statistiques 24(1), 73-98 (1988). · Zbl 0649.60041
[122] Gerhard Keller and Carlangelo Liverani. Rare Events, Escape Rates and Quasistationarity: Some Exact Formulae. Journal of Statistical Physics, 135(3):519-534, 2009. · Zbl 1179.37010
[123] Gerhard Keller. Rare events, exponential hitting times and extremal indices via spectral perturbation. Dynamical Systems, 27(1):11-27, 2012. · Zbl 1263.37040
[124] Gary Froyland, Simon Lloyd, and Anthony Quas. A semi-invertible Oseledets theorem with applications to transfer operator cocycles. Discrete and Continuous Dynamical Systems, Series A, 33(9):3835-3860, 2013. · Zbl 1405.37057
[125] Cecilia González-Tokman and Anthony Quas. A semi-invertible operator Oseledets theorem. Ergodic Theory and Dynamical Systems, 34(4):1230-1272, 2014. · Zbl 1317.37006
[126] Gouëzel, S.: Limit theorems in dynamical systems using the spectral method. In: Hyperbolic Dynamics, Fluctuations and Large Deviations, Volume 89 of Proceedings Symposium in Pure Mathematics, pp.161-193. Amer. Math. Soc., Providence (2015). · Zbl 1376.37016
[127] Davor Dragicević, Gary Froyland, Cecilia González-Tokman, and Sandro Vaienti. A spectral approach for quenched limit theorems for random expanding dynamical systems. Commu-nications in Mathematical Physics, 360(3):1121-1187, 2018. · Zbl 1401.60032
[128] Harry Crimmins and Gary Froyland. Stability and approximation of statistical limit laws for multidimensional piecewise expanding maps. Annales Henri Poincaré, 20:3113-3161, 2019. · Zbl 1431.37023
[129] Harry Crimmins and Gary Froyland. Fourier approximation of the statistical properties of Anosov maps on tori. Nonlinearity, 33(11):6244-, 2020. · Zbl 1459.37081
[130] Davor Dragicević, Gary Froyland, Cecilia González-Tokman, and Sandro Vaienti. A spectral approach for quenched limit theorems for random hyperbolic dynamical systems. Transac-tions of the American Mathematical Society, 373:629-664, 2020. · Zbl 1431.37005
[131] Jason Atnip, Gary Froyland, Cecilia González-Tokman, and Sandro Vaienti. Perturbation formulae for quenched random dynamics with applications to open systems and extreme value theory. https://arxiv.org/pdf/2206.02471.pdf References · Zbl 1481.37032
[132] Abeer Al Ahmadieh and Cynthia Vinzant. Characterizing principal minors of symmetric matrices via determinantal multiaffine polynomials. arXiv:2105.13444, 2021.
[133] Abeer Al Ahmadieh and Cynthia Vinzant. Determinantal representations and the image of the principal minor map. arXiv:2205.05267, 2022.
[134] Petter Brändén. Polynomials with the half-plane property and matroid theory. Adv. Math., 216(1):302-320, 2007. · Zbl 1128.05014
[135] Olga Holtz and Bernd Sturmfels. Hyperdeterminantal relations among symmetric principal minors. J. Algebra, 316(2):634-648, 2007. · Zbl 1130.15005
[136] Mario Kummer, Daniel Plaumann, and Cynthia Vinzant. Hyperbolic polynomials, interlac-ers, and sums of squares. Math. Program., 153(1, Ser. B):223-245, 2015. · Zbl 1349.14181
[137] Shaowei Lin and Bernd Sturmfels. Polynomial relations among principal minors of a 4 × 4-matrix. J. Algebra, 322(11):4121-4131, 2009. · Zbl 1198.14049
[138] E.J. Nanson. on the relations between the coaxial minors of a determinant. Philos. Magazine, 44(5):362-367, 1897. · JFM 28.0140.01
[139] Luke Oeding. Set-theoretic defining equations of the variety of principal minors of symmetric matrices. Algebra Number Theory, 5(1):75-109, 2011. References · Zbl 1238.14035
[140] M. Micha lek, Enumerative geometry meets statistics, combinatorics and topology, arXiv:2209.02640v2 (2022).
[141] B. Sturmfels, C. Uhler Multivariate Gaussian, semidefinite matrix completion, and convex algebraic geometry, Ann. Inst. Statist. Math. 62 (2010), no. 4, 603-638. MR2652308 · Zbl 1440.62255
[142] J. Huh, Milnor numbers of projective hypersurfaces and the chromatic polynomial of graphs, Journal of the American Mathematical Society 25 (2012), 907-927 · Zbl 1243.14005
[143] Positivity Certificates and Polynomial Optimization on Non-Compact Semialgbraic Sets Ngoc Hoang Anh Mai (joint work with J.-B. Lasserre, V. Magron) References
[144] R. Curto and L. Fialkow, The truncated complex K-moment problem, Transactions of the American mathematical society 352(6):2825-2855, 2000. · Zbl 0955.47011
[145] D. Henrion and J.-B. Lasserre, Detecting global optimality and extracting solutions in Glop-tiPoly, In Positive polynomials in control, pages 293-310. Springer, 2005. · Zbl 1119.93301
[146] T. Jacobi, A representation theorem for certain partially ordered commutative rings, Math-ematische Zeitschrift, 237(2):259-273, 2001. · Zbl 0988.54039
[147] M. Laurent, Revisiting two theorems of Curto and Fialkow on moment matrices, Proceed-ings of the American Mathematical Society, 133(10):2965-2976, 2005. · Zbl 1078.14085
[148] M. Putinar and F.-H. Vasilescu, Solving moment problems by dimensional extension, Comptes Rendus de l’Académie des Sciences-Series I-Mathematics, 328(6):495-499, 1999. · Zbl 0931.44004
[149] B. Reznick, Uniform denominators in Hilbert’s seventeenth problem, Mathematische Zeitschrift, 220(1):75-97, 1995. · Zbl 0828.12002
[150] L. Baldi and B. Mourrain. On the effective Putinar’s Positivstellensatz and moment ap-proximation. Mathematical Programming, 1-33 (2022).
[151] G. Blekherman and J-B. Lasserre. The truncated K-moment problem for closure of open sets. Journal of Functional Analysis 263.11 (2012): 3604-3616. · Zbl 1282.47016
[152] G. Blekherman, F. Rincon, R. Sinn, C. Vinzant and J. Yu. Moments, Sums of Squares, and Tropicalization. arXiv preprint arXiv:2203.06291 (2022).
[153] R.E. Curto and L.A. Fialkow. An analogue of the Riesz-Haviland theorem for the truncated moment problem. Journal of Functional Analysis 255.10 (2008): 2709-2731. · Zbl 1158.44003
[154] S. Kuhlmann and M. Marshall. Positivity, sums of squares and the multi-dimensional mo-ment problem. Transactions of the American Mathematical Society 354.11 (2002): 4285-4301. · Zbl 1012.14019
[155] M. Marshall. Positive polynomials and sums of squares. No. 146. American Mathematical Soc., 2008. · Zbl 1169.13001
[156] S. Naldi, R. Sinn. Conic programming: Infeasibility certificates and projective geometry, Journal of Pure and Applied Algebra 225:7 (2021), 106606. · Zbl 1461.90100
[157] M. Putinar. Positive polynomials on compact semi-algebraic sets. Indiana University Math-ematics Journal 42.3 (1993): 969-984. · Zbl 0796.12002
[158] C. Scheiderer, Sums of squares of polynomials with rational coefficients, J. Eur. Math. Soc. (2016), 1495-1513. · Zbl 1354.14036
[159] K. Schmüdgen. The moment problem. Vol. 9. Berlin: Springer, 2017. · Zbl 1383.44004
[160] V. Tchakaloff. Formules de cubatures mécaniquesà coefficients non négatifs. Bull. Sci. Math. 81 (1957), 123-134. · Zbl 0079.13908
[161] Jose Acevedo and Grigoriy Blekherman. Power mean inequalities and sums of squares. In preparation, 2023.
[162] Grigoriy Blekherman, Annie Raymond, and Fan Wei. Undecidability of polynomial inequal-ities in weighted graph homomorphism densities. arXiv preprint arXiv:2207.12378, 2022. · Zbl 1495.05141
[163] Grigoriy Blekherman and Cordian Riener. Symmetric non-negative forms and sums of squares. Discrete & Computational Geometry, 65:764-799, 2021. · Zbl 1472.14063
[164] Béla Bollobás. Relations between sets of complete subgraphs. Proceedings of the Fifth British Combinatorial Conference (Univ. Aberdeen, Aberdeen, 1975), pages 79-84, 1976. · Zbl 0325.05118
[165] Man-Duen Choi, Tsit-Yuen Lam, and Bruce Reznick. Even symmetric sextics. Mathematis-che Zeitschrift, 195(4):559-580, 1987. · Zbl 0654.10024
[166] Hamed Hatami and Serguei Norine. Undecidability of linear inequalities in graph homomor-phism densities. Journal of the American Mathematical Society, 24(2):547-565, 2011. · Zbl 1259.05088
[167] Igor Klep, James Eldred Pascoe, and Jurij Volčič. Positive univariate trace polynomials. Journal of Algebra, 579:303-317, 2021. · Zbl 1468.13057
[168] Hana Melánová, Bernd Sturmfels, and Rosa Winter. Recovery from power sums. Experi-mental Mathematics, pages 1-10, 2022.
[169] Konrad Schmüdgen. The moment problem, volume 277 of Graduate Texts in Mathematics. Springer, Cham, 2017. Reporter: Sarah-Tanja Hess · Zbl 1383.44004
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.