×

Trace-positive non-commutative polynomials. (English) Zbl 1396.16017

Summary: We give some examples of trace-positive non-commutative polynomials of degree \(4\) in \(3\) variables which are not cyclically equivalent to a sum of hermitian squares. Since some similar examples of degree \(6\) in \(2\) variables were alreay known, this settles a perfect analogy to Hilbert’s result from the commutative context which says that positive (commutative) polynomials of degree \(d\) in \(n\) variables are not necessarily sums of squares, the first non-trivial cases being obtained for \((d,n)=(4,3)\) and \((d,n)=(6,2)\).

MSC:

16S10 Associative rings determined by universal properties (free algebras, coproducts, adjunction of inverses, etc.)
15A63 Quadratic and bilinear forms, inner products

Software:

NCSOStools
Full Text: DOI

References:

[1] Artin, Emil, \"Uber die Zerlegung definiter Funktionen in Quadrate, Abh. Math. Sem. Univ. Hamburg, 5, 1, 100-115 (1927) · JFM 52.0122.01 · doi:10.1007/BF02952513
[2] [Bu] S. Burgdorf, Trace-positive polynomials, sums of hermitian squares and the tracial moment problem, http://nbn-resolving.de/urn:nbn:de:bsz:352-139805, thesis 2011.
[3] Burgdorf, Sabine; Klep, Igor, Trace-positive polynomials and the quartic tracial moment problem, C. R. Math. Acad. Sci. Paris, 348, 13-14, 721-726 (2010) · Zbl 1205.15047 · doi:10.1016/j.crma.2010.06.005
[4] [CKP] K. Cafuta, I. Klep, J. Povh, NCSOStools: A computer algebra system for symbolic and numerical computation with noncommutative polynomials, http://ncsostools.fis.unm.si. · Zbl 1226.90063
[5] Choi, Man Duen; Lam, Tsit Yuen, An old question of Hilbert. Conference on Quadratic Forms-1976 (Proc. Conf., Queen’s Univ., Kingston, Ont., 1976), 385-405. Queen’s Papers in Pure and Appl. Math., No. 46 (1977), Queen’s Univ.: Kingston, Ont.:Queen’s Univ. · Zbl 0382.12010
[6] [Gy] L. Glebsky, Almost commuting matrices with respect to normalized Hilbert-Schmidt norm., preprint arXiv 1002.3082v1 (2010).
[7] Hilbert, David, Ueber die Darstellung definiter Formen als Summe von Formenquadraten, Math. Ann., 32, 3, 342-350 (1888) · JFM 20.0198.02 · doi:10.1007/BF01443605
[8] Helton, J. William, “Positive” noncommutative polynomials are sums of squares, Ann. of Math. (2), 156, 2, 675-694 (2002) · Zbl 1033.12001 · doi:10.2307/3597203
[9] Klep, Igor; Schweighofer, Markus, Connes’ embedding conjecture and sums of Hermitian squares, Adv. Math., 217, 4, 1816-1837 (2008) · Zbl 1184.46055 · doi:10.1016/j.aim.2007.09.016
[10] Lin, Huaxin, Approximation by normal elements with finite spectra in \(C^\ast \)-algebras of real rank zero, Pacific J. Math., 173, 2, 443-489 (1996) · Zbl 0860.46039
[11] Rowen, Louis Halle, Polynomial identities in ring theory, Pure and Applied Mathematics 84, xx+365 pp. (1980), Academic Press Inc. [Harcourt Brace Jovanovich Publishers]: New York:Academic Press Inc. [Harcourt Brace Jovanovich Publishers] · Zbl 0461.16001
[12] Motzkin, T. S., The arithmetic-geometric inequality. Inequalities (Proc. Sympos. Wright-Patterson Air Force Base, Ohio, 1965), 205-224 (1967), Academic Press: New York:Academic Press
[13] Robinson, Raphael M., Some definite polynomials which are not sums of squares of real polynomials. Selected questions of algebra and logic (collection dedicated to the memory of A. I. Mal\cprime cev) (Russian), 264-282 (1973), Izdat. “Nauka” Sibirsk. Otdel., Novosibirsk · Zbl 0277.10019
[14] Verchota, Gregory C., Noncoercive sums of squares in \(\mathbb{R}[x_1,\dots ,x_n]\), J. Pure Appl. Algebra, 214, 3, 236-250 (2010) · Zbl 1272.12005 · doi:10.1016/j.jpaa.2009.05.012
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.