×

Uniform denominators in Hilbert’s seventeenth problem. (English) Zbl 0828.12002

Author’s abstract: We give a concrete realization of the solution to Hilbert’s 17th problem for real positive definite forms and Becker’s generalization to higher even powers. Suppose \(p = p(x_1, \ldots, x_n)\) is a real positive definite form of degree \(m\). Then \(p\) is a sum of squares of rational functions with denominator \((\sum x^2_i)^r\) for sufficiently large \(r\). This generalizes a theorem of Pólya for real even positive definite forms. The proof gives substantially more explicit information.
Let \(\varepsilon (p) = \inf \{p(u) : u \in S^{n - 1}\}/ \sup \{p(u) : u \in S^{n - 1}\}\), a measure of how close \(p\) is to having a nontrivial zero. If \(r \geq {nm(m - 1) \over (4 \log 2) \varepsilon (p)} - {n + m \over 2}\), then \(p \cdot (\sum x^2_i)^r\) is a nonnegative linear combination of a universal set of \((m + 2r)\)-th powers of linear forms in \(\mathbb{Q} [x_1, \ldots, x_n]\). If \(p \in K [x_1, \ldots, x_n]\) for a field \(K \subset \mathbb{R}\), then the linear combination has coefficients in \(K\). Further, if \(2k \mid m\), then \(p\) is a sum of \(2k\)- th powers of rational functions whose denominators are a suitable power of \(\sum x^2_i\). If \(p\) and \(q\) are both positive definite and \(\deg (p) - \deg (q)\) is a multiple of \(2k\), then the rational function \(p/q\) is a sum of \(2k\)-th powers of rational functions whose denominators are a suitable product of powers of \(q\) and \(\sum x^2_i\).
Reviewer: B.Reznick

MSC:

12D15 Fields related with sums of squares (formally real fields, Pythagorean fields, etc.)
11E25 Sums of squares and representations by other particular quadratic forms

References:

[1] [B1] E. Becker,Valuations and real places in the theory of formally real fields, Géométrie algébrique réelle et formes quadratiques, Proceedings, Rennes 1981 (J.-L.Colliot Thélène, M. Coste, L. Mahé et M.-F. Roy, eds.), Lecture Notes in Math. No. 959, Springer-Verlag, Berlin, Heidelberg, New York 1982, pp. 1–40
[2] [B2] E. Becker,The real holomorphy ring and sums of 2n-th powers, Géométrie algébrique réelle et formes quadratiques, Proceedings, Rennes 1981 (J.-L.Colliot Thélène, M. Coste, L. Mahé et M.-F. Roy, eds.), Lecture Notes in Math. No. 959, Springer-Verlag, Berlin, Heidelberg, New York 1982, pp. 139–181
[3] [B3] E. Becker and V. Powers,Sums of powers in rings and the real holomorphy ring, preprint · Zbl 0922.12003
[4] [C1] M. D. Choi, T. Y. Lam and B. Reznick,Even symmetric sextics, Math. Z.195 (1987), 559–580 · Zbl 0654.10024 · doi:10.1007/BF01166704
[5] [C2] W. K. Clifford,On syzygetic relations among the powers of linear quantics originally in Proc. Lond. Math. Soc., vol. 3, 1869, Paper XIV in Mathematical papers, Chelsea, New York, 1968
[6] [D1] P. J. Davis and P. Rabinowitz,Methods of numerical integration, 2nd ed., Academic Press, Orlando, 1984 · Zbl 0537.65020
[7] [D2] J. A. de Loera and F. Santos,An effective version of Pólya’s thoerem on positive definite forms, preprint
[8] [D3] C. N. Delzell,A constructive, continuous solution to Hilbert’s 17th problem, and other results in semi-algebraic geometry, Ph.D. thesis, Stanford University, 1980
[9] [D4] C. N. Delzell,Case distinctions are necessary for representing polynomials as sums of squares, Proceedings of the Herbrand Symposium Logic Colloquium ’81 (J. Stern, ed.), North-Holland, 1982, pp. 87–103
[10] [D5] C. N. Delzell,Continuous, piecewise-polynomial functions which solve Hilbert’s 17th problem, J. Reine Angew. Math.440 (1993), 157–173 · Zbl 0774.12003 · doi:10.1515/crll.1993.440.157
[11] [D6] C. N. Delzell,Nonexistence of analytically varying solutions to Hilbert’s 17th problem, Recent Advances in Real Algebraic Geometry and Quadratic Forms, Proc. RAGSQUAD Year, Berkeley 1990–1991 (W.B. Jacob, et al., eds.), Contemp. Math.155, Amer. Math. Soc. 1994, pp. 107–117
[12] [D7] C. N. Delzell, L. González-Bega, H. Lombardi,A continuous and rational solution to Hilbert’s 17th problem and several cases of the Positivstellensatz, Compuational algebraic geometry (F. Eyssette, A. Galligo, eds.), Prog. Math.109, Birkhäuser (1993), 61–75 · Zbl 0804.14001
[13] [D8] R. A. Devore and G. G. Lorentz,Constructive approximation, Springer-Verlag, 1993 · Zbl 0797.41016
[14] [D9] L. E. Dickson,History of the theory of numbers, Vol. II. Chelsea, New York, 1966, Originally published by Carnegie Institute of Washington, 1920
[15] [E1] W. J. Ellison,Waring’s problem, Amer. Math. Monthly78 (1971), 10–36 · Zbl 0205.35001 · doi:10.2307/2317482
[16] [H1] W. Habicht,Über die Zerlegung strikte definiter Formen in Quadrate. Comment. Math. Helv.12 (1940), 317–322 · Zbl 0023.10201 · doi:10.1007/BF01620655
[17] [H2] G. H. Hardy, J. Littlewood and G. Pólya,Inequalities, 2nd ed., Cambridge University Press, 1967
[18] [H3] F. Hausdorff,Zur Hilbertschen Lösung des Waringschen Problems. Math. Ann.67 (1909), 301–305 · JFM 40.0237.01 · doi:10.1007/BF01450406
[19] [H4] D. Hilbert,Über die Darstellung definiter Formen als Summe von Formenquadraten Math. Ann.32 (1888), 342–350; see Ges. Abh. 2, 154–161, Springer, Berlin, 1933, reprinted by Chelsea, New York, 1981 · JFM 20.0198.02 · doi:10.1007/BF01443605
[20] [H5] D. Hilbert,Beweis für die Darstellbarkeit der ganzen Zahlen durch eine feste Anzahl n-ter Potenzen (Waringsches Problem) Math. Ann.67 (1909), 281–300; see Ges. Abh. 1, 510–527, Springer, Berlin, 1932, reprinted by Chelsea, New York, 1981 · JFM 40.0236.03 · doi:10.1007/BF01450405
[21] [H6] E. W. Hobson,On a theorem in differentiation, and its application to spherical harmonics, Proc. of the London Math. Soc.24 (1892–1893), 55–67 · JFM 25.0822.02 · doi:10.1112/plms/s1-24.1.55
[22] [H7] E. W. Hobson,On a theorem in the differential calculus Mess. of Math.23 (1893–1894), 115–119
[23] [H8] E. W. Hobson,The theory of spherical and ellipsoidal harmonics, Cambridge University Press, 1931 · Zbl 0004.21001
[24] [P1] G. Pólya,Über positive Darstellung von Polynomen Vierteljschr. Naturforsch. Ges. Zürich73 (1928), 141–145; see Collected Papers, Vol. 2, pp. 309–313, MIT Press, 1974
[25] [R1] B. Reznick,Sums of even powers of real linear forms Mem. Amer. Math. Soc.96 (1992), no. 463 · Zbl 0762.11019
[26] [R2] B. Reznick,An inequality for products of polynomials Proc. Amer. Math. Soc.117 (1993), 1063–1073 · Zbl 0780.12001 · doi:10.1090/S0002-9939-1993-1119265-2
[27] [R3] R. M. Robinson,Some definite polynomials which are not sums of squares in polynomials, Selected questions of algebra and logic (a collection dedicated to the memory of A. I. Mal’cev), Indat. ”Nauka” Sibirsk. Otdel. Novosibirsk (1973), 264–282, Abstract in Notices Amer. Math. Soc. 16 (1969), p. 554
[28] [S1] J. Schmid,On totally positive units of real holomorphy rings Israel J. Math.85 (1994), 339–350 · Zbl 0798.12001 · doi:10.1007/BF02758647
[29] [S2] A. Strasburger,A generalization of the Bochner identity Exposition. Math.11 (1993), 153–157 · Zbl 0770.42009
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.