×

Differential inclusions in Wasserstein spaces: the Cauchy-Lipschitz framework. (English) Zbl 1454.49018

Authors’ abstract: In this article, we propose a general framework for the study of differential inclusions in the Wasserstein space of probability measures. Based on earlier geometric insights on the structure of continuity equations, we define solutions of differential inclusions as absolutely continuous curves whose driving velocity fields are measurable selections of multifunction taking their values in the space of vector fields. In this general setting, we prove three of the founding results of the theory of differential inclusions: Filippov’s theorem, the Relaxation theorem, and the compactness of the solution sets. These contributions – which are based on novel estimates on solutions of continuity equations – are then applied to derive a new existence result for fully non-linear mean-field optimal control problems with closed-loop controls.

MSC:

49J45 Methods involving semicontinuity and convergence; relaxation
49J21 Existence theories for optimal control problems involving relations other than differential equations
28B20 Set-valued set functions and measures; integration of set-valued functions; measurable selections
34A60 Ordinary differential inclusions
34G20 Nonlinear differential equations in abstract spaces
49Q22 Optimal transportation
60B05 Probability measures on topological spaces

References:

[1] Achdou, Y.; Laurière, M., On the system of partial differential equations arising in mean field type control, Discrete Contin. Dyn. Syst., 35, 9, 3879-3900 (2015) · Zbl 1350.49017
[2] Albi, G.; Balagué, D.; Carrillo, J. A.; von Brecht, J., Stability analysis of Flock and Mill rings for second order models in swarming, SIAM J. Appl. Math., 74, 3, 794-818 (2014) · Zbl 1305.37044
[3] Ambrosio, L., Transport equation and Cauchy problem for BV vector fields, Invent. Math., 158, 2, 227-260 (2004) · Zbl 1075.35087
[4] Ambrosio, L., The flow associated to weakly differentiable vector fields: recent results and open problems, (Nonlinear Conservation Laws and Applications, vol. 153 (2011)), 181-193 · Zbl 1248.35048
[5] Ambrosio, L.; Colombo, M.; Figalli, A., Existence and uniqueness of maximal regular flows with non-smooth vector fields, Arch. Ration. Mech. Anal., 218, 2, 1043-1081 (2015) · Zbl 1348.34039
[6] Ambrosio, L.; Crippa, G., Continuity equations and ODE flows with non-smooth velocities, Proc. R. Soc. Edinb., 144, 6, 1191-1244 (2014) · Zbl 1358.37046
[7] Ambrosio, L.; Fusco, N.; Pallara, D., Functions of Bounded Variations and Free Discontinuity Problems, Oxford Mathematical Monographs (2000) · Zbl 0957.49001
[8] Ambrosio, L.; Gangbo, W., Hamiltonian ODEs in the Wasserstein space of probability measures, Commun. Pure Appl. Math., 61, 1, 18-53 (2008) · Zbl 1132.37028
[9] Ambrosio, L.; Gigli, N., A user’s guide to optimal transport, (Modelling and Optimisation on Flows on Networks. Modelling and Optimisation on Flows on Networks, Lecture Notes in Mathematics (2012), Springer)
[10] Ambrosio, L.; Gigli, N.; Savaré, G., Gradient Flows in Metric Spaces and in the Space of Probability Measures, Lectures in Mathematics ETH Zürich (2008), Birkhäuser Verlag · Zbl 1145.35001
[11] Ambrosio, L.; Gigli, N.; Savaré, G., Calculus and heat flow in metric measure spaces and applications to spaces with Ricci bounds from below, Invent. Math., 195, 2, 289-391 (2014) · Zbl 1312.53056
[12] Aubin, J. P.; Cellina, A., Differential Inclusions (1984), Springer-Verlag · Zbl 0538.34007
[13] Aubin, J. P.; Frankowska, H., Set-Valued Analysis (1990), Birkhäuser: Birkhäuser Basel · Zbl 0713.49021
[14] Ballerini, M.; Cabibbo, N.; Candelier, R., Interaction ruling animal collective behavior depends on topological rather than metric distance: evidence from a field study, Proc. Natl. Acad. Sci., 105, 4, 1232-1237 (2008)
[15] Beard, R. W.; Ren, W., Distributed Consensus in Multi-vehicle Cooperative Control (2008), Springer-Verlag · Zbl 1144.93002
[16] Bellomo, N.; Herrero, M. A.; Tosin, A., On the dynamics of social conflicts: looking for the black swan, Kinet. Relat. Models, 6, 3, 459-479 (2013) · Zbl 1276.82028
[17] Benamou, J. D.; Brenier, Y., A computational fluid mechanics solution to the Monge-Kantorovich mass transfer problem, Numer. Math., 84, 3, 375-393 (2000) · Zbl 0968.76069
[18] Bernard, P., Young measures, superposition and transport, Indiana Univ. Math. J., 57, 1, 247-275 (2008) · Zbl 1239.49059
[19] Bertozzi, A. L.; Topaz, C. M., Swarming patterns in a two-dimensional kinematic model for biological groups, SIAM J. Appl. Math., 65, 1, 152-174 (2004) · Zbl 1071.92048
[20] Bianchini, S.; Bonicatto, P., A uniqueness result for the decomposition of vector fields in \(\mathbb{R}^d\), Invent. Math., 220, 255-393 (2020) · Zbl 1435.35121
[21] Bongini, M.; Fornasier, M.; Rossi, F.; Solombrino, F., Mean field Pontryagin maximum principle, J. Optim. Theory Appl., 175, 1-38 (2017) · Zbl 1386.49003
[22] Bonnet, B., A Pontryagin maximum principle in Wasserstein spaces for constrained optimal control problems, ESAIM Control Optim. Calc. Var., 25, 52 (2019) · Zbl 1442.49025
[23] Bonnet, B.; Rossi, F., Intrinsic Lipschitz regularity of mean-field optimal controls, 2020, in revision
[24] Bonnet, B.; Rossi, F., The Pontryagin maximum principle in the Wasserstein space, Calc. Var. Partial Differ. Equ., 58, 11 (2019) · Zbl 1404.49016
[25] Brézis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext (2010), Springer · Zbl 1218.46002
[26] Bullo, F.; Cortés, J.; Martines, S., Distributed Control of Robotic Networks, Applied Mathematics (2009), Princeton University Press · Zbl 1193.93137
[27] Burger, M.; Pinnau, R.; Totzeck, O.; Tse, O., Mean-field optimal control and optimality conditions in the space of probability measures (2019)
[28] Burger, M.; Pinnau, R.; Totzeck, O.; Tse, O.; Roth, A., Instantaneous control of interacting particle systems in the mean-field limit, J. Comput. Phys., 405, 109-181 (2020) · Zbl 1454.82025
[29] Cavagnari, G.; Marigonda, A.; Nguyen, K. T.; Priuli, F. S., Generalized control systems in the space of probability measures, Set-Valued Var. Anal., 26, 3, 663-691 (2018) · Zbl 1400.93330
[30] Cavagnari, G.; Marigonda, A.; Piccoli, B., Superposition principle for differential inclusions, (Large-Scale Scientific Computing (2018)), 201-209 · Zbl 1443.49003
[31] Cavagnari, G.; Marigonda, A.; Piccoli, B., Generalized dynamic programming principle and sparse mean-field control problems, J. Math. Anal. Appl., 481, 1, Article 123437 pp. (2020) · Zbl 1425.49011
[32] Cristiani, E.; Piccoli, B.; Tosin, A., Multiscale Modeling of Pedestrian Dynamics, vol. 12 (2014), Springer · Zbl 1314.00081
[33] Cucker, F.; Smale, S., On the mathematics of emergence, Jpn. J. Math., 2, 1, 197-227 (2007) · Zbl 1166.92323
[34] Di Perna, R. L.; Lions, P.-L., Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98, 3, 511-548 (1989) · Zbl 0696.34049
[35] Diestel, J.; Uhl, J. J., Vector Measures, vol. 15 (1977), American Mathematical Society · Zbl 0369.46039
[36] Duprez, M.; Morancey, M.; Rossi, F., Approximate and exact controllability of the continuity equation with a localized vector field, SIAM J. Control Optim., 57, 2, 1284-1311 (2019) · Zbl 1411.93028
[37] Duprez, M.; Morancey, M.; Rossi, F., Minimal time problem for crowd models with a localized vector field, J. Differ. Equ., 269, 1, 82-124 (2020) · Zbl 1436.93021
[38] Fornasier, M.; Lisini, S.; Orrieri, C.; Savaré, G., Mean-field optimal control as gamma-limit of finite agent controls, Eur. J. Appl. Math., 30, 6, 1153-1186 (2019) · Zbl 1427.35302
[39] Fornasier, M.; Piccoli, B.; Rossi, F., Mean-field sparse optimal control, Philos. Trans. R. Soc. A, 372, 2028 (2014) · Zbl 1353.49014
[40] Fornasier, M.; Solombrino, F., Mean field optimal control, ESAIM Control Optim. Calc. Var., 20, 4, 1123-1152 (2014) · Zbl 1305.49004
[41] Frankowska, H., A priori estimates for operational differential inclusions, J. Differ. Equ., 84, 100-128 (1990) · Zbl 0705.34016
[42] Frankowska, H.; Marchini, E. M.; Mazzola, M., Necessary optimality conditions for infinite dimensional state constrained control problems, J. Differ. Equ., 264, 12, 7294-7327 (2018) · Zbl 1390.49025
[43] Gangbo, W.; Kim, H. K.; Paccini, T., Differential Form on Wasserstein Space and Infinite-Dimensional Hamiltonian Systems, Memoirs of the AMS, vol. 211 (2011) · Zbl 1221.53001
[44] Hegselmann, R.; Krause, U., Opinion dynamics and bounded confidence models, analysis, and simulation, J. Artif. Soc. Soc. Simul., 5, 3 (2002)
[45] Hirsch, M. W., Differential Topology, Graduate Texts in Mathematics, vol. 33 (1974), Springer
[46] Huang, M. Y.; Malhamé, R.; Caines, P. E., Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle, Commun. Inf. Syst., 6, 3, 221-252 (2006) · Zbl 1136.91349
[47] Jimenez, C.; Marigonda, A.; Quincampoix, M., Optimal control of multiagent systems in the Wasserstein space, Calc. Var. Partial Differ. Equ., 59, 58 (2020) · Zbl 1436.49003
[48] Karimghasemi, S.; Müller, S.; Westdickenberg, M., Flow solutions of transport equations (2020)
[49] Lasry, J-M.; Lions, P.-L., Mean field games, Jpn. J. Math., 2, 1, 229-260 (2007) · Zbl 1156.91321
[50] McQuade, S.; Piccoli, B.; Pouradier Duteil, N., Social dynamics models with time-varying influence, Math. Models Methods Appl. Sci., 29, 04, 681-716 (2019) · Zbl 1428.34069
[51] Mesbahi, M.; Egerstedt, M., Graph Theoretic Multi-Agent Systems (2010)
[52] Otto, F., The geometry of dissipative equations: the porous medium equation, Commun. Partial Differ. Equ., 26, 101-174 (2001) · Zbl 0984.35089
[53] Piccoli, B., Measure differential equations, Arch. Ration. Mech. Anal., 233, 1289-1317 (2019) · Zbl 1417.49059
[54] Piccoli, B., Measure differential inclusions, (IEEE Conference on Decision and Control (2020)), 1323-1328
[55] Piccoli, B.; Rossi, F., Transport equation with nonlocal velocity in Wasserstein spaces: convergence of numerical schemes, Acta Appl. Math., 124, 1, 73-105 (2013) · Zbl 1263.35202
[56] Pogodaev, N., Optimal control of continuity equations, Nonlinear Differ. Equ. Appl., 23, 21 (2016) · Zbl 1337.49007
[57] Pogodaev, N., Numerical algorithm for optimal control of continuity equations (2017)
[58] Santambrogio, F., Optimal Transport for Applied Mathematicians, vol. 87 (2015), Birkhäuser: Birkhäuser Basel · Zbl 1401.49002
[59] Villani, C., Optimal Transport: Old and New (2009), Springer-Verlag: Springer-Verlag Berlin · Zbl 1156.53003
[60] Vinter, R. B., Optimal control, (Systems and Control: Foundations and Applications (2000), Birkhäuser: Birkhäuser Basel) · Zbl 1050.49022
[61] Vlasov, A. A., Many-Particle Theory and Its Application to Plasma (1961), Gordon and Breach: Gordon and Breach New York
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.