×

Interactions between algebraic geometry and noncommutative algebra. Abstracts from the workshop held May 1–7, 2022. (English) Zbl 1519.00017

Summary: This workshop was on the interactions between noncommutative algebra, representation theory and algebraic geometry. The major objective was to bring together researchers from those areas with the focus on topics and problems where geometric methods are prevalent.

MSC:

00B05 Collections of abstracts of lectures
00B25 Proceedings of conferences of miscellaneous specific interest
17-06 Proceedings, conferences, collections, etc. pertaining to nonassociative rings and algebras
14-06 Proceedings, conferences, collections, etc. pertaining to algebraic geometry
17A36 Automorphisms, derivations, other operators (nonassociative rings and algebras)
14A22 Noncommutative algebraic geometry
14D20 Algebraic moduli problems, moduli of vector bundles
16E35 Derived categories and associative algebras
Full Text: DOI

References:

[1] J. August, M. Cheung, E. Faber, S. Gratz and S. Schroll, Grassmannian categories of infinite rank, arXiv:2007.14224.
[2] J. August, M. Cheung, E. Faber, S. Gratz and S. Schroll, Cluster structures for the A∞ singularity, in preparation.
[3] E. Barnard, E. Gunawan, E. Meehan and R. Schiffler, Cambrian combinatorics on quiver representations (type a), arXiv:1912.02840. · Zbl 1504.05296
[4] K. Baur and S. Gratz, Transfinite mutations in the completed infinity-gon. J. Combin. The-ory Ser. A, 155, 321-359, 2018. · Zbl 1377.05198
[5] R. O. Buchweitz, G. M. Greuel and F. O. Schreyer, Cohen-Macaulay modules on hypersur-face singularities II, Invent. Math., 88(1), 165-182, 1987. · Zbl 0617.14034
[6] J. E. Grabowski and S. Gratz, Cluster algebras of infinite rank, J. Lond. Math. Soc. (2), 89(2), 337-363, 2014. With an appendix by Michael Groechenig. · Zbl 1308.13034
[7] O. Iyama and Y. Yoshino, Mutation in triangulated categories and rigid Cohen-Macaulay modules, Invent. Math., 172(1),117-168, 2008. · Zbl 1140.18007
[8] B. T. Jensen, A. D. King, and X. Su, A categorification of Grassmannian cluster algebras, Proc. Lond. Math. Soc. (3), 113(2), 185-212, 2016. References · Zbl 1375.13033
[9] O. Schiffmann and E. Vasserot, Cherednik algebras, W algebras and the equivariant coho-mology of the moduli space of instantons on A 2 , Pub. Math. IHÉS 118(1) (2013), 213-342. · Zbl 1284.14008
[10] B. Davison, The integrality conjecture and the cohomology of preprojective stacks, Arxiv:1602.02110
[11] B. Davison, BPS Lie algebras and the less perverse filtration on the preprojective CoHA, Arxiv:2007.03289
[12] M. Kontsevich and Y. Soibelman, Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson-Thomas invariants, Commun. Number Theory Phys. 5(2) (2011), 231-352. · Zbl 1248.14060
[13] A. Morrison, S. Mozgovoy, K. Nagao and B. Szendrői, Motivic Donaldson-Thomas in-variants of the conifold and the refined topological vertex, Adv. Math., 230 (4-6) (2012), 2065-2093. · Zbl 1257.14028
[14] B. Davison, A boson-fermion correspondence in cohomological Donaldson-Thomas theory, to appear Glasg. Math. J, (Special issue for 2021 BMC) · Zbl 1530.14102
[15] M. Hovey, “Model categories”, Mathematical Surveys and Monographs 63, AMS, 1999. · Zbl 0909.55001
[16] L. IIlusie, “Complexe Cotangent et Déformations 1”, LNM 239, Springer, 1971. · Zbl 0224.13014
[17] B. Toën, “Derived algebraic geometry”, EMS Surv. Math. Sci. 1 (2014), 153-240. · Zbl 1314.14005
[18] A. Yekutieli, “Derived Categories”, Cambridge University Press, 2019; free prepublication version https://arxiv.org/abs/1610.09640v4.
[19] Claire Amiot, Cluster categories for algebras of global dimension 2 and quivers with poten-tial, Annales de l’institut Fourier 59 (2009), no. 6, 2525-2590. · Zbl 1239.16011
[20] Harm Derksen, Jerzy Weyman, and Andrei Zelevinsky, Quivers with potentials and their representations I: Mutations, Selecta Mathematica 14 (2008), 59-119. · Zbl 1204.16008
[21] Vladimir Drinfeld, DG quotients of DG categories, J. Algebra 272 (2004), no. 2, 643-691. · Zbl 1064.18009
[22] Victor Ginzburg, Calabi-Yau algebras, arXiv:math/0612139v3 [math.AG]. · Zbl 1204.14004
[23] Bernhard Keller, On the cyclic homology of exact categories, J. Pure Appl. Algebra 136 (1999), no. 1, 1-56. · Zbl 0923.19004
[24] Bernhard Keller and Dong Yang, Derived equivalences from mutations of quivers with po-tential, Advances in Mathematics 26 (2011), 2118-2168. · Zbl 1272.13021
[25] Junyang Liu, On the structure of relative Calabi-Yau morphisms, City University of Paris, Ph. D. thesis in preparation.
[26] M. F. Atiyah, K-theory and reality, Quart. J. Math. Oxford Ser. (2) 17 (1966), 367-386. · Zbl 0146.19101
[27] M. Brown, Knörrer periodicity and Bott periodicity, Doc. Math. 21 (2016), 1459-1501. · Zbl 1360.13043
[28] H. Knörrer, Cohen-Macaulay modules on hypersurface singularities. I, Invent. Math. 88 (1987), no. 1, 153-164. · Zbl 0617.14033
[29] Y. Hirano, Derived Knörrer periodicity and Orlov’s theorem for gauged Landau-Ginzburg models, Compos. Math. 153 (2017), no. 5, 973-1007. · Zbl 1370.14019
[30] K. Hori and J. Walcher, D-brane categories for orientifolds-the Landau-Ginzburg case, J. High Energy Phys. 4 (2008), 030, 36. · Zbl 1246.81337
[31] J.-L. Spellmann and M. Young, Matrix factorizations, Reality and Knörrer periodicity, arXiv:2204.13645 (2022).
[32] R. Anno and T. Logvinenko, Spherical DG functors, J. Eur. Math. Soc 19 (9) (2017) 2577-2656. · Zbl 1374.14015
[33] W. Donovan, Relating derived equivalences for simplices of higher-dimensional flops, arXiv:2108.10541. References · Zbl 1517.14016
[34] G. Bellamy and A. Craw, Birational geometry of symplectic quotient singularities, Invent. Math. 222 (2020), no. 2, 399-468. MR 4160872 · Zbl 1470.14033
[35] C. Birkar, P. Cascini, C. D. Hacon, and J. McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010), no. 2, 405-468. MR 2601039 (2011f:14023) · Zbl 1210.14019
[36] G. Bellamy, A. Craw, S. Rayan, T. Schedler, and H. Weiss, All 81 crepant resolutions of a finite quotient singularity are hyperpolygon spaces, arXiv:2112.09878.
[37] G. Bellamy, A. Craw, and T. Schedler, Birational geometry of quiver varieties, in prepara-tion.
[38] G. Bellamy, Counting resolutions of symplectic quotient singularities, Compos. Math. 152 (2016), no. 1, 99-114. MR 3453389 · Zbl 1348.14033
[39] G. Bellamy and T. Schedler, A new linear quotient of C 4 admitting a symplectic resolution, Math. Z. 273 (2013), no. 3-4, 753-769, arXiv:1109.3015. MR 3030675 · Zbl 1271.16029
[40] M. Donten-Bury and J. A. Wiśniewski, On 81 symplectic resolutions of a 4-dimensional quotient by a group of order 32, Kyoto J. Math. 57 (2017), no. 2, 395-434. MR 3648055 · Zbl 1390.14048
[41] V. G. Drinfeld, Degenerate affine Hecke algebras and Yangians, Funktsional. Anal. i Prilozhen. 20 (1986), no. 1, 69-70. MR 831053 · Zbl 0599.20049
[42] P. Etingof and V. Ginzburg, Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism, Invent. Math. 147 (2002), no. 2, 243-348. · Zbl 1061.16032
[43] V. Ginzburg and D. Kaledin, Poisson deformations of symplectic quotient singularities, Adv. Math. 186 (2004), no. 1, 1-57, arXiv:math/0212279. · Zbl 1062.53074
[44] D. Kaplan and T. Schedler, Crepant resolutions via gluing, in preparation.
[45] N. Mekareeya, The moduli space of instantons on an ALE space from 3d N = 4 field theories, J. High Energy Phys. (2015), no. 12, 174, front matter+29pp. MR 3464628 · Zbl 1388.81863
[46] Y. Namikawa, Poisson deformations of affine symplectic varieties, Duke Math. J. 156 (2011), no. 1, 51-85, arXiv:math/0609741. MR 2746388 (2012a:14023) · Zbl 1208.14028
[47] Y. Namikawa, Poisson deformations and birational geometry, J. Math. Sci. Univ. Tokyo 22 (2015), no. 1, 339-359. MR 3329199 · Zbl 1334.14021
[48] Jarod Alper, Pieter Belmans, Daniel Bragg, Jason Liang, and Tuomas Tajakka. Projectivity of the moduli space of vector bundles on a curve. In Stacks Project Expository Collection, number 480 in London Mathematical Society Lecture Note Series. Cambridge University Press, 2022. · Zbl 1506.14072
[49] Jarod Alper, Daniel Halpern-Leistner, and Jochen Heinloth. Existence of moduli spaces for algebraic stacks, 2018. arXiv:1812.01128v3 · Zbl 1462.14050
[50] Pieter Belmans, Chiara Damiolini, Hans Franzen, Victoria Hoskins, Svetlana Makarova, and Tuomas Tajakka. Projectivity and effective global generation of determinantal line bundles on quiver moduli, 2022. arXiv:2210.00033
[51] Raymond Cheng, Carl Lian, and Takumi Murayama. Projectivity of the moduli of curves. In Stacks Project Expository Collection, number 480 in London Mathematical Society Lecture Note Series. Cambridge University Press, 2022. · Zbl 1506.14059
[52] Eduardo Esteves and Mihnea Popa. Effective very ampleness for generalized theta divisors. Duke Math. J., 123(3):429-444, 2004. · Zbl 1068.14038
[53] Victoria Hoskins. Parallels between moduli of quiver representations and vector bundles over curves. SIGMA Symmetry Integrability Geom. Methods Appl., 14:Paper No. 127, 46, 2018. · Zbl 1460.14030
[54] Alastair King. Moduli of representations of finite-dimensional algebras. Quart. J. Math. Oxford Ser. (2), 45(180):515-530, 1994. · Zbl 0837.16005
[55] C. S. Seshadri. Space of unitary vector bundles on a compact Riemann surface. Ann. Math. (2), 85:303-336, 1967. · Zbl 0173.23001
[56] Yukinobu Toda. Moduli stacks and invariants of semistable objects on K3 surfaces. Adv. Math., 217(6):2736-2781, 2008. · Zbl 1136.14007
[57] Alexander Beilinson, Victor Ginzburg, and Wolfgang Soergel. Koszul Duality Patterns in Representation Theory. Journal of the American Mathematical Society, 9(2):473-527, 1996. · Zbl 0864.17006
[58] M. V. Bondarko. Differential graded motives: Weight complex, weight filtrations and spec-tral sequences for realizations; Voevodsky versus Hanamura. Journal of the Institute of Mathematics of Jussieu, 8(1):39-97, January 2009. · Zbl 1161.14014
[59] Giovanni Cerulli Irelli, Francesco Esposito, Hans Franzen, and Markus Reineke. Cell de-compositions and algebraicity of cohomology for quiver Grassmannians. Advances in Math-ematics, 379:107544, March 2021. · Zbl 1490.16038
[60] Neil Chriss and Victor Ginzburg. Representation Theory and Complex Geometry. Birkhäuser Boston, Boston, 2010. · Zbl 1185.22001
[61] Denis-Charles Cisinski and Frédéric Déglise. Triangulated Categories of Mixed Motives. Springer Monographs in Mathematics. Springer International Publishing, Cham, 2019. · Zbl 07138952
[62] Jens Niklas Eberhardt. Springer motives. Proceedings of the American Mathematical Soci-ety, 149(5):1845-1856, May 2021. · Zbl 1505.14052
[63] Jens Niklas Eberhardt. K-Motives and Koszul Duality. arXiv:1909.11151 [math.RT], Sep-tember 2019.
[64] Jens Niklas Eberhardt and Jakob Scholbach. Integral Motivic Sheaves And Geometric Rep-resentation Theory. arXiv:2202.11477 [math.AG], March 2022. · Zbl 1502.14017
[65] Jens Niklas Eberhardt and Catharina Stroppel. Motivic Springer theory. Indagationes Math-ematicae, 33(1):190-217, January 2022. · Zbl 1482.14003
[66] George Lusztig. Affine Hecke Algebras and Their Graded Version. Journal of the American Mathematical Society, 2(3):599-635, 1989. · Zbl 0715.22020
[67] Ruslan Maksimau. Flag versions of quiver Grassmannians for Dynkin quivers have no odd cohomology over Z. arXiv:1909.04907 [math.RT], September 2019.
[68] Raphael Rouquier. Quiver Hecke algebras and 2-Lie algebras. arXiv:1112.3619 [math.RT], December 2011. · Zbl 1247.20002
[69] Julia Sauter. Cell decompositions of quiver flag varieties for nilpotent representations of the oriented cycle. arXiv:1509.08026 [math.RT], February 2016. · Zbl 1401.14211
[70] Wolfgang Soergel. Kategorie O , Perverse Garben und Modulnüber den Koinvarianten zur Weylgruppe. Journal of the American Mathematical Society, 3(2):421, April 1990. · Zbl 0747.17008
[71] Wolfgang Soergel, Rahbar Virk, and Matthias Wendt. Equivariant motives and geometric representation theory. (with an appendix by F. Hörmann and M. Wendt). arXiv:1809.05480 [math.RT], September 2018.
[72] Wolfgang Soergel and Matthias Wendt. Perverse motives and graded derived category O Journal of the Institute of Mathematics of Jussieu, 17(2):347-395, April 2018. · Zbl 1436.14015
[73] T. A. Springer. A construction of representations of Weyl groups. Inventiones mathematicae, 44(3):279-293, October 1978. · Zbl 0376.17002
[74] Catharina Stroppel and Ben Webster. Quiver Schur algebras and q-Fock space. arXiv:1110.1115 [math.RA], July 2014. · Zbl 1241.14009
[75] M. Varagnolo and E. Vasserot. Canonical bases and KLR-algebras. 2011(659):67-100, Oc-tober 2011. · Zbl 1229.17019
[76] Vladimir Voevodsky, Andrei Suslin, and Eric M. Friedlander. Triangulated Categories of Motives Over a Field. In Cycles, Transfers, and Motivic Homology Theories. (AM-143), pages 188-238. Princeton University Press, 2000. · Zbl 1019.14009
[77] N. Broomhead and D. Ploog, Autoequivalences of toric surfaces, Proc. Amer. Math. Soc. 142 No. 4 (2014), 1133-1146. · Zbl 1286.14053
[78] A. Ishii and H. Uehara, Autoequivalences of derived categories on the minimal resolutions of An-singularities on surfaces, JDG 71 No. 3 (2005), 385-435. · Zbl 1097.14013
[79] A. Ishii, S. Okawa, and H. Uehara, Exceptional collections on Σ 2 , arXiv:2107.03051.
[80] T. Kitamura and S. Okawa, The reconstruction theorem for Artin-Schelter regular 3-dimensional cubic Z-algebras, in preparation
[81] S. Okawa and K. Ueda, AS-regular algebras from acyclic spherical helices, arXiv:2007.07620.
[82] M. Van den Bergh, Noncommutative quadrics, IMRN 17 (2011), 3983-4026. References · Zbl 1311.14003
[83] David J. Anick. Noncommutative graded algebras and their Hilbert series. J. Algebra, 78 (1982), 120-140. · Zbl 0502.16002
[84] David J. Anick. On the homology of associative algebras, Trans. Amer. Math. Soc. 296 (1986), no. 2, 641-659. · Zbl 0598.16028
[85] G. Bellamy, A. Craw, and T. Schedler. Birational geometry of quiver varieties, in prepara-tion.
[86] G. Bellamy and T. Schedler, Symplectic resolutions of quiver varieties, Selecta Math. (N.S.) 27 (2021), no. 3, Paper No. 36, 50 pp. · Zbl 1492.16012
[87] George M. Bergman. The diamond lemma for ring theory. Adv. Math., 29 (1978),178-218. · Zbl 0326.16019
[88] Raf Bocklandt, Federica Galluzzi, and Francesco Vaccarino. The Nori-Hilbert scheme is not smooth for 2-Calabi-Yau algebras. J. Noncommut. Geom., 10 (2016), 745-774. · Zbl 1406.14003
[89] W. Crawley-Boevey, P. Etingof and V. Ginzburg. Noncommutative geometry and quiver algebras, Adv. Math. 209 (2007), no. 1, 274-336. · Zbl 1111.53066
[90] William Crawley-Boevey and Martin P. Holland. Noncommutative deformations of Kleinian singularities. Duke Math. J., 92 (1998), 605-635. · Zbl 0974.16007
[91] William Crawley-Boevey and Yuta Kimura. On deformed preprojective algebras. arXiv:2108.00795, (2021). · Zbl 1510.16011
[92] William Crawley-Boevey and Peter Shaw. Multiplicative preprojective algebras, middle con-volution and the Deligne-Simpson problem. Adv. Math., 201 (2006), 180-208. · Zbl 1095.15014
[93] Joachim Cuntz and Daniel Quillen. Algebra extensions and nonsingularity. J. Amer. Math. Soc., 8 (1995), 251-289. · Zbl 0838.19001
[94] Ben Davison. Purity and 2-Calabi-Yau categories, (2021).
[95] Pavel Etingof and Victor Ginzburg. Noncommutative complete intersections and matrix integrals. Pure Appl. Math. Q., 3 (1, Special Issue: In honor of Robert D. MacPherson. Part 3) (2007), 107-151. · Zbl 1151.14006
[96] Daniel Kaplan. Multiplicative preprojective algebras of Dynkin quivers, (2021). · Zbl 1506.16018
[97] Daniel Kaplan and Travis Schedler. Multiplicative preprojective algebras are 2-Calabi-Yau, (2019). · Zbl 1521.16012
[98] T. Schedler. Zeroth Hochschild homology of preprojective algebras over the integers, Adv. Math. 299 (2016), 451-542. · Zbl 1369.16011
[99] Peter Shaw. Generalisations of preprojective algebras. Ph.D. thesis, University of Leeds, (2005).
[100] C. Brav, H. Thomas. Braid groups and Kleinian singularities. Math. Ann., 351(4), (2011), 1005-1017. · Zbl 1264.14026
[101] A. Nordskova, Y. Volkov. Faithful actions of braid groups by twists along ADE-configurations of spherical objects. -preprint, (2019), arXiv:1910.02401.
[102] Y. Qiu, J. Woolf. Contractible stability spaces and faithful braid group actions. Geom. Topol., 22(6), (2018), 3701-3760. · Zbl 1423.18044
[103] P. Seidel, R. Thomas. Braid group actions on derived categories of coherent sheaves. Duke Math. J., 108(1), (2001), 37-108. · Zbl 1092.14025
[104] D. Orlov, Equivalences of derived categories and K3 surfaces,. J. Math. Sci. (New York). 84 pp. 1361-1381 (1997) · Zbl 0938.14019
[105] V. Lunts and D. Orlov, Uniqueness of enhancement for triangulated categories, J. Amer. Math. Soc. 23, 853-908 (2010) · Zbl 1197.14014
[106] T. Raedschelders, A. Rizzardo, M. Van den Bergh, New examples of non-Fourier-Mukai functors, arXiv:1912.03555 [math.AG], to appear in Compositio Mathematica. · Zbl 1498.13046
[107] A. Rizzardo, M. Van den Bergh and A. Neeman, An example of a non-Fourier-Mukai functor between derived categories of coherent sheaves, Invent. Math. 216, 927-1004 (2019) · Zbl 1504.14037
[108] B. Toën The homotopy theory of dg-categories and derived Morita theory, Invent. Math. 167, 615-667 (2007) · Zbl 1118.18010
[109] C. Amiot, Cluster categories for algebras of global dimension 2 and quivers with potentional, Ann. Inst. Fourier, Grenoble 59, no.6 (2009) 2525-2590. · Zbl 1239.16011
[110] C. Amiot, O. Iyama, and I. Reiten, Stable categories of Cohen-Macaulay modules and cluster categories, Amer. J. Math, 137 (2015) no.3, 813-857. · Zbl 1450.18003
[111] M. Auslander, Functors and morphisms determined by objects, in: Representation Theory of Algebras, Lecture Notes in Pure and Applied Mathematics 37, Marcel Dekker, New York, 1978, 1-244. · Zbl 0383.16015
[112] A. B. Buan, R. Marsh, M. Reineke, I. Reiten, and G. Todorov, Tilting theory and cluster combinatorics, Adv. Math. 204 (2006) 572-618. · Zbl 1127.16011
[113] R. O. Buchweitz, Maximal Cohen-Macaulay modules and Tate cohomology, Mathematical Surveys and Monographs, 262. American Mathematical Society, Providence, RI, 2021. · Zbl 1505.13002
[114] R. O. Buchweitz, O. Iyama, and K. Yamaura, Tilting theory for Gorenstein rings in dimen-sion one, Forum of Mathematics, Sigma, 8, E36. · Zbl 1470.13019
[115] L. Guo, Cluster tilting objects in generalized higher cluster categories, J. Pure Appl. Algebra 215 (2011), no. 9, 2055-2071. · Zbl 1239.16012
[116] N. Hanihara, Cluster categories of formal DG algebras and singularity categories, to appear in Forum of Mathematics, Sigma, arXiv:2003.7858. · Zbl 1521.16005
[117] N. Hanihara, O. Iyama, in preparation.
[118] O. Iyama, Tilting Cohen-Macaulay representations, Proceedings of the International Con-gress of Mathematicians-Rio de Janeiro 2018. Vol. II. Invited lectures, 125-162, World Sci. Publ., Hackensack, NJ, 2018. · Zbl 1452.16018
[119] O. Iyama and R. Takahashi, Tilting and cluster tilting for quotient singularities, Math. Ann. 356 (2013), 1065-1105. · Zbl 1398.13014
[120] B. Keller, On triangulated orbit categories, Doc. Math. 10 (2005), 551-581. · Zbl 1086.18006
[121] B. Keller, Deformed Calabi-Yau completions, with an appendix by M. Van den Bergh, J. Reine Angew. Math. 654 (2011) 125-180. · Zbl 1220.18012
[122] B. Keller, D. Murfet, and M. Van den Bergh, On two examples of Iyama and Yoshino, Compos. Math. 147 (2011) 591-612. · Zbl 1264.13016
[123] B. Keller and I. Reiten, Acyclic Calabi-Yau categories, with an appendix by M. Van den Bergh, Compos. Math. 144 (2008) 1332-1348. · Zbl 1171.18008
[124] K. Yamaura, Realizing stable categories as derived categories, Adv. Math. 248 (2013) 784-819. · Zbl 1294.18009
[125] M. Artin and W.F. Schelter,Graded algebras of global dimension 3, Adv. in Math.,66(2) (1987) 171-216. MR 917738 (88k:16003). DOI 10.1016/0001-8708(87)90034-X. · Zbl 0633.16001 · doi:10.1016/0001-8708(87)90034-X
[126] M. Artin and M. Van den Bergh, Twisted homogeneous coordinate rings, J. Algebra, 133 (1990) 249-271. MR 1067406 (91k:14003). DOI 10.1016/0021-8693(90)90269-T. · Zbl 0717.14001 · doi:10.1016/0021-8693(90)90269-T
[127] A.A. Belavin, Dynamical symmetry of integrable quantum systems, Nuclear Phys. B 180 (1981). MR 609841. DOI 10.1016/0550-3213(81)90414-4. · Zbl 0959.81006 · doi:10.1016/0550-3213(81)90414-4
[128] A. Chirvasitu, R. Kanda and S. Paul Smith, Feigin and Odesskii’s elliptic algebras, J. Algebra 581 (2021) 173-225. MR 4249759. DOI 10.1016/j.jalgebra.2021.04.009. · Zbl 1492.14003 · doi:10.1016/j.jalgebra.2021.04.009
[129] A. Chirvasitu, R. Kanda and S. Paul Smith, The characteristic variety for Feigin and Odesskii’s elliptic algebras, Math. Research Letters, to appear. · Zbl 1492.14003
[130] A. Chirvasitu, R. Kanda and S. Paul Smith, Maps from Feigin and Odesskii’s elliptic algebras to twisted homogeneous coordinate rings, Forum Math. Sigma 9 (2021) Paper No. e4, 50. MR 4202489. DOI 10.1017/fms.2020.60. · Zbl 1472.14002 · doi:10.1017/fms.2020.60
[131] A. Chirvasitu, R. Kanda and S. Paul Smith, Elliptic R-matrices and Feigin and Odesskii’s elliptic algebras, Selecta Math. to appear. · Zbl 1514.14004
[132] A. Chirvasitu, R. Kanda and S. Paul Smith, Finite quotients of powers of an elliptic curve, arXiv:1905.06710v3.
[133] A. Chirvasitu, R. Kanda and S. Paul Smith, Modular properties of elliptic algebras, arXiv:2108.09143.
[134] A. Chirvasitu, S. Paul Smith, and L.Z. Wong, Noncommutative geometry of homog-enized quantum sl(2, C), Pacific J. Math. 292 (2018) 305-354. MR 3733976. DOI 10.2140/pjm.2018.292.305. · Zbl 1386.14014 · doi:10.2140/pjm.2018.292.305
[135] B.L. Feigin and A.V. Odesskii, Sklyanin algebras associated with an elliptic curve, Preprint deposited with Institute of Theoretical Physics of the Academy of Sciences of the Ukrainian SSR, 33 pages, 1989.
[136] T. Levasseur, Some properties of noncommutative regular graded rings, Glasgow Math. J. 34 (1992) 277-300. MR 1181768 (93k:16045). DOI 10.1017/S0017089500008843. · Zbl 0824.16032 · doi:10.1017/S0017089500008843
[137] A.V. Odesskii and B.L. Feigin, Sklyanin elliptic algebras, Funkts. Anal. i Prilozhen 23(3) (1989) 45-54. MR 1026987 (91e:16037). DOI 10.1007/BF01079526. · Zbl 0687.17001 · doi:10.1007/BF01079526
[138] E.K. Sklyanin, Some algebraic structures connected with the Yang-Baxter equation, Funkts. Anal. i Prilozhen 16(4) (1982) 27-34. MR 684124 (84c:82004).
[139] S. Paul Smith, The four-dimensional Sklyanin algebras, K-Theory 8 (1994) 65-80, MR 1273836 (95i:16016). DOI 10.1007/BF00962090. · Zbl 0809.16051 · doi:10.1007/BF00962090
[140] S. Paul Smith, Some finite-dimensional algebras related to elliptic curves, Representation theory of algebras and related topics (Mexico City, 1994), CMS Conf. Proc., 19 315-348, Amer. Math. Soc., Providence, RI, 1996. MR 1388568 · Zbl 0856.16009
[141] S. Paul Smith, Subspaces of non-commutative spaces, Trans. Amer. Math. Soc. 354 (2002) 2131-2171 (electronic). MR 1885647 (2003f:14002). DOI 10.1090/S0002-9947-02-02963-X. · Zbl 0998.14003 · doi:10.1090/S0002-9947-02-02963-X
[142] S. Paul Smith, Maps between non-commutative spaces, Trans. Amer. Math. Soc., 356, (2004). MR 2052602. DOI 10.1090/S0002-9947-03-03411-1. · Zbl 1076.14003 · doi:10.1090/S0002-9947-03-03411-1
[143] S. Paul Smith, Corrigendum to “Maps between non-commutative spaces” [Trans. Amer. Math. Soc., 356(7) (2004) 2927-2944], Trans. Amer. Math. Soc. 368 (2016) 8295-8302 (electronic). MR 2052602 (2005f:14004). DOI = 10.1090/S0002-9947-03-03411-1. · Zbl 1076.14003 · doi:10.1090/S0002-9947-03-03411-1
[144] J.T. Tate and M. Van den Bergh, Homological properties of Sklyanin algebras, Invent. Math. 124 (1996) 619-647. MR 1369430 (98c:16057). DOI 10.1007/s002220050065. · Zbl 0876.17010 · doi:10.1007/s002220050065
[145] M. Van den Bergh, A translation principle for the four-dimensional Sklyanin algebras, J. Algebra 184 (1996) 435-490. MR 1409223. DOI 10.1006/jabr.1996.0269. · Zbl 0876.17011 · doi:10.1006/jabr.1996.0269
[146] M. Van den Bergh, Blowing up of non-commutative smooth surfaces, Mem. Amer. Math. Soc., 154 (2001) 734. MR 1846352 (2002k:16057). DOI 10.1090/memo/0734. Coadjoint orbits for the Virasoro algebra Susan J. Sierra (joint work with Alexey V. Petukhov) · Zbl 0998.14002 · doi:10.1090/memo/0734
[147] Unless otherwise referenced, all results in this extended abstract are proved in [4].
[148] Let W = C[t, t −1 ]∂ t be the Witt algebra of algebraic vector fields on C × , and let Vir , the Virasoro algebra be its unique nontrivial central extension Vir = C[t, t −1 ]∂ t ⊕ Cz, with Lie bracket given by [f ∂ t , g∂ t ] = (f g ′ − f ′ g)∂ t + Res 0 (f ′ g ′′ − g ′ f ′′ )z, z is central. It has been known since 2013 that the universal enveloping algebras of these Lie algebras have badly behaved one-sided structure: Theorem 1 ([5]). U (W ) and thus U (Vir ) are neither left or right noetherian. References
[149] R. Biswal and S. J. Sierra, Ideals in enveloping algebras of affine Kac-Moody algebras (2022), arxiv:2112.08334.
[150] N. Iyudu and S. J. Sierra, Enveloping algebras with just infinite Gelfand-Kirillov dimension, Arkiv för Matematik 58 (2020), no. 2, 285-306. · Zbl 1475.16029
[151] O. Léon Sánchez and S. J. Sierra, A Poisson basis theorem for symmetric algebras of infinite-dimensional Lie algebras (2020), arxiv:2008.02845.
[152] A. V. Petukhov and S. J. Sierra, The Poisson spectrum of the symmetric algebra of the Virasoro algebra (2021), arxiv:2106.02565.
[153] S. J. Sierra and C. Walton, The universal enveloping algebra of the Witt algebra is not noetherian, Advances in Mathematics 262 (2014), 239-260. · Zbl 1297.14006
[154] Yu. Berest and O. Chalykh, Quasi-invariants of complex reflection groups, Compositio Math. 147 (2011), 965-1002. · Zbl 1233.16018
[155] Yu. Berest, P. Etingof and V. Ginzburg, Cherednik algebras and differential operators on quasi-invariants, Duke Math. J. 118(2) (2003), 279-337. · Zbl 1067.16047
[156] Yu. Berest and A. C. Ramadoss, Spaces of quasi-invariants and homotopy Lie groups, in preparation
[157] A. Borel, Sur la cohomologie des espaces fibrés principaux et des espaces homogènes de groupes de Lie compacts, Ann. of Math. (2) 57 (1953), 115-207. · Zbl 0052.40001
[158] O. A. Chalykh and A. P. Veselov, Commutative rings of partial differential operators and Lie algebras, Comm. Math. Phys. 126 (1990), 597-611. · Zbl 0746.47025
[159] W. G. Dwyer and C. W. Wilkerson, Homotopy fixed-point methods for Lie groups and finite loop spaces, Ann. of Math. (2) 139 (1994), no. 2, 395-442. · Zbl 0801.55007
[160] P. Etingof and V. Ginzburg, On m-quasi-invariants of a Coxeter group, Mosc. Math. J. 2(3) (2002), 555-566. · Zbl 1028.81027
[161] M. Feigin and A. P. Veselov, Quasi-invariants of Coxeter groups and m-harmonic polyno-mials, Int. Math. Res. Not. 10 (2002), 521-545. · Zbl 1009.20044
[162] D. Quillen, Rational homotopy theory, Ann. of Math. (2) 90 (1969), 205-295 · Zbl 0191.53702
[163] D.-E. Diaconescu, M. Porta, and F. Sala, Representations of cohomological Hall algebras via torsion pairs, in preparation.
[164] M. Kapranov and E. Vasserot, The cohomological Hall algebra of a surface and factor-ization cohomology, arXiv:1901.07641, 2019.
[165] M. Kontsevich and Y. Soibelman, Cohomological Hall algebra, exponential Hodge struc-tures and motivic Donaldson-Thomas invariants, Commun. Number Theory Phys. 5 (2011), no. 2, 231-352. · Zbl 1248.14060
[166] M. Porta and F. Sala, Two-dimensional categorified Hall algebras, to appear in Journal of the European Mathematical Society, arXiv:1903.07253, 2019. · Zbl 1524.14005
[167] F. Sala and O. Schiffmann, Cohomological Hall algebra of Higgs sheaves on a curve, Algebr. Geom. 7 (2020), no. 3, 346-376. · Zbl 1467.14034
[168] O. Schiffmann and E. Vasserot, On cohomological Hall algebras of quivers: generators, J. Reine Angew. Math. 760 (2020), 59-132. · Zbl 1452.16017
[169] O. Schiffmann and E. Vasserot, On cohomological Hall algebras of quivers: Yangians, arXiv:1705.07491, 2017.
[170] S. Abeasis, A. Del Fra, Degenerations for the representations of an equioriented quiver of type Am, Bull. Un. Mat. Ital. Suppl. (1980), n. 2, 157-171. · Zbl 0449.16024
[171] K. Bongartz, On Degenerations and Extensions of Finite Dimensional Modules, Adv. Math. 121 (1996), 245-287. · Zbl 0862.16007
[172] M. Boos, G. Cerulli Irelli. Symmetric degenerations are not in general induced by type A degenerations, Rend. Mat. Appl. (7), 43 (2022). · Zbl 1490.14082
[173] M. Boos, G. Cerulli Irelli. On degenerations and extensions of symplectic and orthogonal quiver representations Preprint (2021).
[174] M. Boos, G. Cerulli Irelli, F. Esposito. Parabolic orbits of 2-nilpotent elements for classical groups, J. Lie Th. 29(4), 2019. · Zbl 1451.14174
[175] G. Cerulli Irelli, X. Fang, E. Feigin, G. Fourier, M. Reineke, Linear degeneration of flag varieties. Math. Z. 287 (2017), 615-654. · Zbl 1388.14145
[176] H. Derksen and J. Weyman, Generalized quivers associated to reductive groups. Colloq. Math. 94 (2002), no. 2, 151-173. · Zbl 1025.16010
[177] P. Magyar, J. Weyman and A. Zelevinsky, Symplectic multiple flag varieties of finite type. J. Algebra 230, 245-265 (2000). · Zbl 0996.14023
[178] C. Riedtmann, Degenerations for representations of quivers with relations. Ann. Sc. ENS, 19 (1986), 275-301. · Zbl 0603.16025
[179] Sergeȋchuk, V. V., Symmetric representations of algebras with involution. Mat. Zametki, 50 (1991), 108-113, 159. · Zbl 0766.16016
[180] D. A. Shmelkin, Signed quivers, symmetric quivers and root systems. J. Lond.Math. Soc. (2) 73 (2006), no. 3. · Zbl 1099.14039
[181] G. Zwara, Degenerations for modules over representation-finite algebras. Proc. AMS 127 (1999), n.5, 1313-1322. · Zbl 0927.16008
[182] A. Bia lynicki-Birula, Some theorems on actions of algebraic groups, Ann. of Math. (2) 98 (1973), 480-497. · Zbl 0275.14007
[183] M. Boos, H. Franzen, Weight spaces and attracting sets for torus actions on quiver moduli, Bull. London Math. Soc. (2022). · Zbl 1520.16011
[184] A. D. King, Moduli of representations of finite-dimensional algebras, Quart. J. Math. Oxford Ser. (2) 45(180) (1994), 515-530. · Zbl 0837.16005
[185] T. Weist, Localization in quiver moduli spaces, Represent. Theory, 17 (2013) 382-425. References · Zbl 1302.14010
[186] D. Kaledin, What do abelian categories form?, arXiv:2112.02155, to appear in Russian Math. Surveys. · Zbl 1495.18011
[187] D. Tamarkin, What do dg-categories form?, Compos. Math. 143 (2007), 1335-1358. Noncommutative Surfaces and Stacky Surfaces Colin Ingalls (joint work with Eleonore Faber, Shinnosuke Okawa, Matthew Satriano) · Zbl 1138.18004
[188] D. Chan, C. Ingalls Non-commutative Coordinate Rings of Stacks, Proc. London Math. Soc. 3 (2004), 63-88. · Zbl 1052.14002
[189] M. Olsson Algebraic spaces and stacks, Vol. 62. American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 2016 · Zbl 1346.14001
[190] I. Reiten, M. Van den Bergh, Two-dimensional tame and maximal orders of finite repre-sentation type, Mem. Amer. Math. Soc. (1989). Reporter: Lukas Bonfert · Zbl 0677.16002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.