×

Motivic Springer theory. (English) Zbl 1482.14003

Algebras and their representations in geometric representation theory can often be constructed geometrically in terms of convolution of cycles using Borel-Moore homology and constructible sheaves, e.g., the Springer correspondence describes how irreducible representations of a Weyl group can be realized in terms of a convolution action on the free vector spaces spanned by irreducible components of Springer fibers.
The authors establish the foundations of a motivic Springer theory using Chow groups and motivic sheaves (Theorem 4.9, page 209). Motivic sheaves are a relative version of triangulated category of mixed motives and their Hom-spaces are governed by Chow groups. As established in the setting of flag varieties, motivic sheaves are a graded version of constructible sheaves that are mathematically advantageous over the mixed \(\ell\)-adic sheaves or mixed Hodge modules.
They show that representations of convolution algebras, such as Lusztig’s graded affine Hecke algebra or the quiver Hecke algebra and quiver Schur algebra in type \(A\) and \(\widetilde{A}\), can be realized in terms of Springer motives (Theorem 5.2, page 211 and Theorem 6.5, page 215). The authors lay foundations to a motivic Springer theory and prove formality results using weight structures. They also express Koszul and Ringel duality in terms of a weight complex functor and show that partial quiver flag varieties in type \(\widetilde{A}\) with cyclic orientation admit an affine paving (Theorem 6.3, page 213).

MSC:

14C15 (Equivariant) Chow groups and rings; motives
14F08 Derived categories of sheaves, dg categories, and related constructions in algebraic geometry
16G20 Representations of quivers and partially ordered sets
20C08 Hecke algebras and their representations

References:

[1] Aoki, K., The weight complex functor is symmetric monoidal, Adv. Math., 368, Article 107145 pp. (2020) · Zbl 1440.18027
[2] Ayoub, J., Les Six OpÉrations de Grothendieck Et Le Formalisme Des Cycles évanescents Dans Le Monde Motivique. I, vol. 314 (2007), Société Mathématique de France: Société Mathématique de France Paris · Zbl 1146.14001
[3] Ayoub, J., Les Six OpÉrations de Grothendieck Et Le Formalisme Des Cycles évanescents Dans Le Monde Motivique. II, vol. 315 (2007), Société Mathématique de France: Société Mathématique de France Paris · Zbl 1153.14001
[4] Ayoub, J., La réalisation étale et les opérations de Grothendieck, Ann. Sci. Éc. Norm. Supér., 47, 1, 1-145 (2014) · Zbl 1354.18016
[5] Beilinson, A., Remarks on Grothendieck’s standard conjectures (2010), arXiv:1006.1116
[6] Beilinson, A.; Bernstein, J.; Deligne, P., Faisceaux pervers, analyse et topologie sur les espaces singuliers, (CIRM, 6-10 Juillet 1981. (Actes Du Colloque de Luminy 1981). I (1982)), (French)
[7] Beilinson, A.; Ginzburg, V.; Soergel, W., Koszul duality patterns in representation theory, J. Amer. Math. Soc., 9, 2, 473-527 (1996) · Zbl 0864.17006
[8] Bernstein, J.; Lunts, V., Equivariant sheaves and functors, (Lecture notes in mathematics, vol. 1578 (1994), Springer-Verlag: Springer-Verlag Berlin, New York) · Zbl 0808.14038
[9] Bloch, S., Algebraic cycles and higher K-theory, Adv. Math., 61, 3, 267-304 (1986) · Zbl 0608.14004
[10] Bondarko, M., Differential graded motives: weight complex, weight filtrations and spectral sequences for realizations; voevodsky versus hanamura, J. Inst. Math. Jussieu, 8, 1, 39-97 (2009) · Zbl 1161.14014
[11] Bondarko, M., Weight structures vs. t-structures; weight filtrations, spectral sequences, and complexes (for motives and in general), J. K-Theory, 6, 3, 387-504 (2010) · Zbl 1303.18019
[12] Bondarko, M., Z[1/p]- Motivic resolution of singularities, Compos. Math., 147, 5, 1434-1446 (2011) · Zbl 1230.14013
[13] Brundan, J.; Stroppel, C., Semi-infinite highest weight categories (2021), arXiv:1808.08022
[14] Carter, R., Finite Groups of Lie Type: Conjugacy Classes and Complex Characters (1993), Wiley
[15] Cerulli Irelli, G.; Esposito, F.; Franzen, H.; Reineke, M., Cell decompositions and algebraicity of cohomology for quiver Grassmannians, Adv. Math., 379, Article 107544 pp. (2021) · Zbl 1490.16038
[16] Chriss, N.; Ginzburg, V., Representation Theory and Complex Geometry (2010), Birkhäuser Boston: Birkhäuser Boston Boston · Zbl 1185.22001
[17] Cisinski, D.-C.; Déglise, F., Triangulated Categories of Mixed Motives, Springer Monographs in Mathematics (2019), Springer International Publishing: Springer International Publishing Cham · Zbl 07138952
[18] Eberhardt, J., K-motives and Koszul duality (2019), arXiv:1909.11151
[19] Eberhardt, J., Springer motives, Proc. Amer. Math. Soc., 149, 5, 1845-1856 (2021) · Zbl 1505.14052
[20] Eberhardt, J.; Kelly, S., Mixed motives and geometric representation theory in equal characteristic, Selecta Math., 25, 2, 30 (2019) · Zbl 1444.14046
[21] Edidin, D.; Graham, W., Equivariant intersection theory(with an Appendix by Angelo Vistoli: The chow ring of M2), Invent. Math., 131, 3, 595-634 (1998) · Zbl 0940.14003
[22] Fangzhou, J., Borel-moore motivic homology and weight structure on mixed motives, Math. Z., 283, 3, 1149-1183 (2016) · Zbl 1375.14023
[23] Huber, A.; Kahn, B., The slice filtration and mixed Tate motives, Compos. Math., 142, 4, 907-936 (2006) · Zbl 1105.14022
[24] Kato, S., An algebraic study of extension algebras, Amer. J. Math., 139, 3, 567-615 (2017) · Zbl 1406.14013
[25] Kazhdan, D.; Lusztig, G., Proof of the Deligne-Langlands conjecture for Hecke algebras, Invent. Math., 87, 153-216 (1987) · Zbl 0613.22004
[26] Kelly, S., Voevodsky Motives and Ldh-Descent (2017), Astérisque, Société mathématique de France: Astérisque, Société mathématique de France Paris · Zbl 1386.14003
[27] Khovanov, M.; Lauda, A., A diagrammatic approach to categorification of quantum groups i, Represent. Theory Amer. Math. Soc., 13, 14, 309-347 (2009) · Zbl 1188.81117
[28] Koenig, S.; Yang, D., Silting objects, simple-minded collections, \(t\)-structures and co-\(t\)-structures for finite-dimensional algebras, Doc. Math., 19, 403-438 (2014) · Zbl 1350.16010
[29] Krishna, A., Higher Chow groups of varieties with group action, Algebra Number Theory, 7, 2, 449-506 (2013) · Zbl 1408.14031
[30] Krishna, A., Equivariant K-theory and higher Chow groups of schemes, Proc. Lond. Math. Soc., 114, 4, 657-683 (2017) · Zbl 1390.14036
[31] Levine, M., Mixed motives, (Friedlander, E.; Grayson, D., Handbook of K-Theory (2005), Springer: Springer Berlin, Heidelberg), 429-521 · Zbl 1112.14020
[32] Lurie, J., Higher topos theory, (Annals of Mathematics Studies, No. 170 (2009), Princeton University Press: Princeton University Press Princeton, N.J) · Zbl 1175.18001
[33] Lurie, J., Higher Algebra (2012)
[34] Lusztig, G., Cuspidal Local Systems and Graded Hecke Algebras, I, 145-202 (1988), Publications Mathématiques de l’IHÉS · Zbl 0699.22026
[35] Lusztig, G., Affine hecke algebras and their graded version, J. Amer. Math. Soc., 2, 3, 599-635 (1989) · Zbl 0715.22020
[36] Maksimau, R., Flag versions of quiver Grassmannians for Dynkin quivers have no odd cohomology over Z (2019), arXiv:1909.04907
[37] Mazorchuk, V.; Ovsienko, S.; Stroppel, C., Quadratic duals, koszul dual functors, and applications, Trans. Amer. Math. Soc., 361, 3, 1129-1172 (2009), Publisher: American Mathematical Society · Zbl 1229.16018
[38] McNamara, P., Monoidality of Kato’s reflection functors (2017), arXiv:1712.00173
[39] McNamara, P., Representation theory of geometric extension algebras (2020), arXiv:1701.07949
[40] J. Milne, Motives— Grothendieck’s Dream. · Zbl 1314.14010
[41] Modoi, G., Reasonable triangulated categories have filtered enhancements, Proc. Amer. Math. Soc., 147, 7, 2761-2773 (2019) · Zbl 1411.18017
[42] Pauksztello, David., Compact corigid objects in triangulated categories and co-t-structures, Cent. Eur. J. Math., 6, 1, 25-42 (2008) · Zbl 1152.18009
[43] Polishchuk, A.; Van den Bergh, M., Semiorthogonal decompositions of the categories of equivariant coherent sheaves for some reflection groups, J. Eur. Math. Soc. (JEMS), 21, 9, 2653-2749 (2019) · Zbl 1470.14037
[44] T. Przeédziecki, Quiver Schur algebras and cohomological Hall algebras.
[45] Quillen, D., On the cohomology and K-theory of the general linear groups over a finite field, Ann. of Math., 96, 3, 552-586 (1972) · Zbl 0249.18022
[46] Richarz, T.; Scholbach, J., The intersection motive of the moduli stack of shtukas, Forum Math. Sigma, 8, 99 (2020) · Zbl 1506.14045
[47] Richarz, T.; Scholbach, J., The motivic satake equivalence, Math. Ann. (2021) · Zbl 1491.14069
[48] Richarz, T.; Scholbach, J., Tate motives on Witt vector affine flag varieties, Selecta Math. (N.S.), 27, 3, 34 (2021) · Zbl 1478.14044
[49] Rider, L., Formality for the nilpotent cone and a derived Springer correspondence, Adv. Math., 235, 208-236 (2013) · Zbl 1278.17004
[50] Rider, L.; Russell, A., Perverse sheaves on the nilpotent cone and lusztig’s generalized springer correspondence, (Lie Algebras, Lie Superalgebras, Vertex Algebras and Related Topics (2016), American Mathematical Society (AMS): American Mathematical Society (AMS) Providence, RI), 273-292 · Zbl 1427.17009
[51] Rider, L.; Russell, A., Formality and Lusztig’s generalized Springer correspondence, Algebr. Represent. Theory, 24, 3, 699-714 (2021) · Zbl 1484.14036
[52] Rouquier, R., 2-Kac-Moody algebras (2008), arXiv:0812.5023
[53] Saito, M., A young person’s guide to mixed hodge modules (2016), math · Zbl 1379.14001
[54] Sauter, J., A survey on springer theory (2013), arXiv:1307.0973
[55] Sauter, J., Cell decompositions of quiver flag varieties for nilpotent representations of the oriented cycle (2016), arXiv:1509.08026
[56] Schiffmann, O., Lectures on hall algebras, (Geometric Methods in Representation Theory. II. Selected Papers Based on the Presentations At the Summer School, Grenoble, France, June 16 - July 4, 2008 (2012), Société Mathématique de France: Société Mathématique de France Paris), 1-141 · Zbl 1309.18012
[57] Schnürer, O., Equivariant sheaves on flag varieties, Math. Z., 267, 1, 27-80 (2011) · Zbl 1217.14034
[58] Schnürer, Olaf M., Homotopy categories and idempotent completeness, weight structures and weight complex functors (2011), arXiv:1107.1227
[59] Schnürer, O., Homotopy categories and idempotent completeness, weight structures and weight complex functors (2011), arXiv:1107.1227
[60] Soergel, W.; Virk, R.; Wendt, M., Equivariant motives and geometric representation theory (2018), (with an appendix by F. Hörmann and M. Wendt), arXiv:1809.05480
[61] Soergel, W.; Wendt, M., Perverse motives and graded derived category O, J. Inst. Math. Jussieu, 17, 2, 347-395 (2018) · Zbl 1436.14015
[62] Sosnilo, V., Theorem of the heart in negative K-theory for weight structures (2017), arXiv:1705.07995
[63] Spitzweck, M., Notes for a Mini-Course on Mixed Tate Motives and Fundamental Groups Given in Bonn (2016)
[64] Springer, T., A construction of representations of Weyl groups, Invent. Math., 44, 3, 279-293 (1978), (en) · Zbl 0376.17002
[65] Stroppel, C.; Webster, B., Quiver Schur algebras and q-Fock space (2014), arXiv:1110.1115
[66] Totaro, B., The Chow ring of a classifying space, (Raskind, W.; Weibel, C., Proceedings of Symposia in Pure Mathematics, vol. 67 (1999), American Mathematical Society: American Mathematical Society Providence, Rhode Island), 249-281 · Zbl 0967.14005
[67] M. Varagnolo, E. Vasserot, Canonical bases and KLR-algebras, no. 659, pp. 67-100. · Zbl 1229.17019
[68] Voevodsky, V.; Suslin, A.; Friedlander, E., Triangulated categories of motives over a field, (Cycles, Transfers, and Motivic Homology Theories. (AM-143) (2000), Princeton University Press), 188-238 · Zbl 1019.14009
[69] Webster, B., Weighted Khovanov-Lauda-Rouquier algebras, Doc. Math., 24, 209-250 (2019) · Zbl 1451.16028
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.