×

Derived algebraic geometry. (English) Zbl 1314.14005

Derived algebraic geometry is a relatively recent branch of mathematics that extends the framework of usual algebraic geometry with the purpose to tackle geometrically special situations effectively. While in classical algebraic geometry the elementary building blocks are spectra of commutative rings, the viewpoint of derived algebraic geometry is based on ring spectra occurring in algebraic topology and homotopical algebra, that, is, on certain non-commutative rings. The mathematical foundations of derived algebraic geometry where mostly developed in the course of the last fifteen years, especially in the works of J. Lurie, B. Toën, G. Vezzosi, and others. Today the subject has a rather large spectrum of interactions with other mathematical theories, including moduli theory, arithmetic geometry, geometric representation theory, and mathematical physics. For example, some recent progress in the study of the geometric Langlands correspondence, topological modular forms, deformation quantization, or \(p\)-adic Hodge theory was achieved by applying the new methods of derived algebraic geometry.
In the survey article under review, the basic concepts and results in derived algebraic geometry are comprehensively described, together with related historical explanations and an illustration of some recent applications in deformation quantization.
More precisely, Section 1 presents some selected historical developments of the various ideas that finally led to the topic of derived algebraic geometry. Section 2 introduces the language of the subject via higher category theory and introduces the notion of derived schemes. Section 3 discusses some characteristic properties of derived schemes as well as derived moduli problems, derived Artin stacks, and other contexts of derived algebraic geometry. Section 4 presents the formal geometry of derived schemes and derived stacks, mainly with a view toward cotangent complexes and obstruction theory, formal descent, tangent differential graded Lie algebras, derived loop spaces and algebraic de Rham theory. The final Section 5 deals with symplectic, Poisson and Lagrangian structures in the derived setting. This discussion includes the notion of differential forms on derived schemes and on derived stacks, shifted symplectic and Lagrangian structures as well as the notion of polyvectors and shifted Poisson structures. A number of illustrating examples supplements the presentation of this highly topical material of current research.
The rich bibliography refers to 146 related research papers for further, more detailed reading about the wealth of ideas, concepts, techniques, and deep results outlined in this highly instructive survey article.

MSC:

14A20 Generalizations (algebraic spaces, stacks)
18G55 Nonabelian homotopical algebra (MSC2010)
18D05 Double categories, \(2\)-categories, bicategories and generalizations (MSC2010)
53D17 Poisson manifolds; Poisson groupoids and algebroids
53D50 Geometric quantization

References:

[1] Alexandrov, M.; Kontsevich, M.; Schwarz, A.; Zaboronsky, O. The geometry of the master equation and topological quantum field theory, Int. J. Modern Phys. A 12, 1405-1429, 1997. · Zbl 1073.81655 · doi:10.1142/S0217751X97001031
[2] Alekseev, A.; Malkin, A.; Meinrenken, E. Lie group valued moment maps. J. Differential Geom. 48 (1998), no. 3, 445-495. · Zbl 0948.53045
[3] André, M. Homologie des algèbres commutatives. Actes du Congrès International des Math- ématiciens (Nice, 1970), Tome 1, pp. 301-308. Gauthier-Villars, Paris, 1971. · Zbl 0222.13017
[4] Arinkin, D.; Caldararu, A. When is the self-intersection of a subvariety a fibration Adv. Math. 231 (2012), no. 2, 815-842. · Zbl 1250.14006 · doi:10.1016/j.aim.2012.05.014
[5] Arinkin, D.; Gaitsgory, D. Singular support of coherent sheaves, and the Langlands conjec- ture. Preprint arXiv arXiv:1201.6343. · Zbl 1423.14085
[6] Artin, M. Versal deformations and algebraic stacks. Invent. Math. 27 (1974), 165-189. · Zbl 0317.14001 · doi:10.1007/BF01390174
[7] Avramov, L. Locally complete intersection homomorphisms and a conjecture of Quillen on the vanishing of cotangent homology. Ann. of Math. (2) 150 (1999), no. 2, 455-487. · Zbl 0968.13007 · doi:10.2307/121087
[8] Batalin, I. A.; Vilkovisky, G. A. Gauge algebra and quantization. Phys. Lett. B 102 (1981), no. 1, 27-31.
[9] Behrend, K. Differential Graded Schemes II: The 2-category of Differential Graded Schemes. Preprint arXiv math/0212226.
[10] Behrend, K.; Fantechi, B. The intrinsic normal cone. Invent. Math. 128 (1997), no. 1, 45-88. · Zbl 0909.14006 · doi:10.1007/s002220050136
[11] Behrens M,; Lawson T. Topological automorphic forms. Mem. Amer. Math. Soc. 204 (2010), no. 958, xxiv+141 pp. [12] Beilinson, A. p-adic periods and derived de Rham cohomology. J. Amer. Math. Soc. 25 (2012), no. 3, 715-738.
[12] Beilinson, A.; Drinfeld, V. Quantization of Hitchin’s integrable system and Hecke Eigen- sheaves. Available at: · Zbl 0864.14007
[13] Ben-Zvi, D.; Nadler, D. Loop spaces and connections. J. Topol. 5 (2012), no. 2, 377-430. · Zbl 1246.14027 · doi:10.1112/jtopol/jts007
[14] Berezin, F. A.; Leites, D. A. Supermanifolds. Dokl. Akad. Nauk SSSR 224 (1975), no. 3, 505-508.
[15] Bergner, J. A survey of (\infty , 1)-categories. Towards higher categories, 69-83, IMA Vol. Math. Appl., 152, Springer, New York, 2010. Bertrand Toën · Zbl 1200.18011 · doi:10.1007/978-1-4419-1524-5_2
[16] Bhatt, B. Completions and derived de Rham cohomology. Preprint arXiv:1207.6193.
[17] Bhatt, B. p-adic derived de Rham cohomology. Preprint arXiv:1204.6560.
[18] Bokstedt, M. Topological Hochschild homology. Preprint 1985 Universitiit Bielefeld.
[19] Bokstedt, M.; Hsiang, W. C.; Madsen, I. The cyclotomic trace and algebraic K-theory of spaces. Invent. Math. 111 (1993), no. 3, 465-539. · Zbl 0804.55004 · doi:10.1007/BF01231296
[20] Bondal A.; Van Den Bergh M. Generators and representability of functors in commutative and noncommutative geometry, Mosc. Math. J. 3 (2003), no. 1, 1-36. · Zbl 1135.18302
[21] Bouaziz, E.; Grojnowski I. A d-shifted Darboux theorem. Preprint arXiv:1309.2197.
[22] Brav, C.; Bussi V.; Joyce, D. A ’Darboux theorem’ for derived schemes with shifted symplec- tic structure. Preprint arXiv:1305.6302. · Zbl 1349.14003
[23] Calaque, D. Lagrangian structures on mapping stacks and semi-classical TFTs. Preprint arXiv:1306.3235. · Zbl 1349.14005
[24] Calaque, D.; Caldararu, A.; Tu, J. On the Lie algebroid of a derived self-intersection. Preprint arXiv:1306.5260.
[25] Calaque, D.; Willwacher, T. Triviality of the higher Formality Theorem. Preprint arXiv:1310.4605. · Zbl 1328.18013 · doi:10.1090/proc/12670
[26] Carlsson, G. Derived completions in stable homotopy theory. J. Pure Appl. Algebra 212 (2008), no. 3, 550-577. · Zbl 1146.55006 · doi:10.1016/j.jpaa.2007.06.015
[27] Ciocan-Fontanine, I.; Kapranov, M. Derived Quot schemes. Ann. Sci. Ecole Norm. Sup. (4) 34 (2001), no. 3, 403-440. · Zbl 1050.14042 · doi:10.1016/S0012-9593(01)01064-3
[28] Ciocan-Fontanine, I.; Kapranov, M. Virtual fundamental classes via dg-manifolds. Geom. Topol. 13 (2009), no. 3, 1779-1804. · Zbl 1159.14002 · doi:10.2140/gt.2009.13.1779
[29] Culler, M.; Shalen, P. Varieties of group representations and splittings of 3-manifolds. Ann. of Math. (2) 117 (1983), no. 1, 109-146. · Zbl 0529.57005 · doi:10.2307/2006973
[30] Costello, K. Notes on supersymmetric and holomorphic field theories in dimensions 2 and 4. Pure Appl. Math. Q. 9 (2013), no. 1, 73-165. · Zbl 1299.14013 · doi:10.4310/PAMQ.2013.v9.n1.a3
[31] Costello, K.; Gwilliam O. Factorization algebras in quantum field theory. Book available at: · Zbl 1377.81004
[32] De Concini, C.; Strickland, E. On the variety of complexes. Adv. in Math. 41 (1981), no. 1, 57-77. · Zbl 0471.14026 · doi:10.1016/S0001-8708(81)80004-7
[33] Deligne, P.; Mumford, D. The irreducibility of the space of curves of given genus. Inst. Hautes Études Sci. Publ. Math. No. 36 1969 75-109. · Zbl 0181.48803 · doi:10.1007/BF02684599
[34] Devinatz, E.; Hopkins, M. J.; Smith, J. H. Nilpotence and stable homotopy theory. I. Ann. of Math. (2) 128 (1988), no. 2, 207-241. · Zbl 0673.55008 · doi:10.2307/1971440
[35] Drinfeld, V. Letter of V. Drinfeld to V. Schechtman, 1988. EMS Surv. Math. Sci. 1 (2014), no. 2, 241-248
[36] Dwyer, W. G.; Kan, D. M. Simplicial localizations of categories. J. Pure Appl. Algebra 17 (1980), no. 3, 267-284. · Zbl 0485.18012 · doi:10.1016/0022-4049(80)90049-3
[37] Dwyer, W. G.; Kan, D. M. Function complexes in homotopical algebra. Topology 19 (1980), no. 4, 427-440. 235 · Zbl 0438.55011 · doi:10.1016/0040-9383(80)90025-7
[38] Dwyer, W. G.; Hirschhorn, P. S.; Kan, D. M.; Smith, J. H. Homotopy limit functors on model categories and homotopical categories. Mathematical Surveys and Monographs, 113. Amer- ican Mathematical Society, Providence, RI, 2004. viii+181 pp. [40] Dyckerhoff, T.; Kapranov, M. Higher Segal spaces I. Preprint arXiv:1212.3563. · Zbl 1072.18012
[39] Ehresmann, C. Catégories topologiques et catégories différentiables. 1959 Colloque Géom. Diff. Globale (Bruxelles, 1958) pp. 137- \? A \?S150 Centre Belge Rech. Math., Louvain. · Zbl 0205.28202
[40] Eisenbud, D.; Harris, J. Schemes. The language of modern algebraic geometry. The Wadsworth and Brooks/Cole Mathematics Series. Wadsworth and Brooks/Cole Advanced Books and Software, Pacific Grove, CA, 1992. xii+157 pp. [43] Feigin, B. L.; Tsygan, B. Additive K-theory and crystalline cohomology. Funktsional. Anal. i Prilozhen. 19 (1985), no. 2, 52-62, 96.
[41] Francis, J. The tangent complex and Hochschild cohomology of En-rings. Compos. Math. 149 (2013), no. 3, 430-480. · Zbl 1276.18008 · doi:10.1112/S0010437X12000140
[42] Fresse, B. On the homotopy of simplicial algebras over an operad. Trans. Amer. Math. Soc. 352 (2000), no. 9, 4113-4141. · Zbl 0958.18005 · doi:10.1090/S0002-9947-99-02489-7
[43] Fulton, W. Intersection theory. Ergebnisse der Mathematik und ihrer Grenzgebiete (3) 2. Springer-Verlag, Berlin, 1984. xi+470 pp. [47] Fulton, W.; Lang, S. Riemann-Roch algebra. Grundlehren der Mathematischen Wis- senschaften [Fundamental Principles of Mathematical Sciences], 277. Springer-Verlag, New York, 1985. x+203 pp. [48] Gabriel, P.; Zisman, M. Calculus of fractions and homotopy theory. Ergebnisse der Math- ematik und ihrer Grenzgebiete, Band 35 Springer-Verlag New York, Inc., New York 1967 x+168 pp. [49] Gaitsgory, D Sheaves of categories and the notion of 1-affineness. Preprint available at:
[44] Gaitsgory, D. Outline of the proof of the geometric Langlands correspondence for GL2. Available at: · Zbl 1406.14008
[45] Grady R.; Gwilliam O. L-infinity spaces and derived loop spaces. Preprint arXiv:1404.5426. · Zbl 1326.14022
[46] Goerss, P. Topological modular forms [after Hopkins, Miller and Lurie]. Séminaire Bour- baki. Volume 2008/2009. Exposés 997-1011. Astérisque No. 332 (2010), Exp. No. 1005, viii, 221-255. · Zbl 1222.55003
[47] Goldman, W.; Millson, J. The deformation theory of representations of fundamental groups of compact Kähler manifolds. Inst. Hautes Etudes Sci. Publ. Math. No. 67 (1988), 43-96. · Zbl 0678.53059 · doi:10.1007/BF02699127
[48] Goodwillie, T. G. On the general linear group and Hochschild homology. Ann. of Math. (2) 121 (1985), no. 2, 383-407. · Zbl 0566.20021 · doi:10.2307/1971179
[49] Grivaux, J. Formality of derived intersections. Preprint arXiv:1302.0237. · Zbl 1327.14033
[50] Grothendieck, A. Catégories cofibrées additives et complexe cotangent relatif. Lecture Notes in Mathematics, No. 79 Springer-Verlag, Berlin-New York 1968 ii+167 pp. [57] Grothendieck, A. A la poursuite des champs., unpublished manuscript. · Zbl 0201.53803 · doi:10.1007/BFb0082437
[51] Grothendieck, A. Technique de descente et théorèmes d’existence en géometrie algébrique. I. Généralités. Descente par morphismes fidèlement plats. Séminaire Bourbaki, Vol. 5, Exp. No. 190, 299-327, Soc. Math. France, Paris, 1995. Bertrand Toën
[52] Grothendieck, A. Techniques de construction en géométrie analytique. I. Description ax- iomatique de l’espace de Teichmüller et de ses variantes. Séminaire Henri Cartan, 13ième année: 1960/61. Familles d’espaces complexes et fondements de la géométrie analytique. Fasc. 1 et 2: Exp. 1-21. (French) 2ième édition, corrigée. Ecole Normale Supérieure Secré- tariat mathématique, Paris 1962 Fasc. 1 (Exp. 1-13), ii+148 pp.; Fasc. 2 (Exp. 14-21), ii+11 pp.
[53] Correspondance Grothendieck-Serre. Edited by Pierre Colmez and Jean-Pierre Serre. Docu- ments Mathématiques (Paris) 2. Société Mathématique de France, Paris, 2001. xii+288 pp. [61] Hakim, M. Topos annelés et schémas relatifs. Ergebnisse der Mathematik und ihrer Gren- zgebiete, Band 64. Springer-Verlag, Berlin-New York, 1972. vi+160 pp. [62] Harrison, D. K. Commutative algebras and cohomology. Trans. Amer. Math. Soc. 104, 1962, 191-204.
[54] Hartshorne, R. On the De Rham cohomology of algebraic varieties. Inst. Hautes Études Sci. Publ. Math. No. 45 (1975), 5-99. · Zbl 0326.14004 · doi:10.1007/BF02684298
[55] Haefliger, A. Structures feuilletées et cohomologie à valeur dans un faisceau de groupoïdes. Comment. Math. Helv. 32 1958 248-329. · Zbl 0085.17303 · doi:10.1007/BF02564582
[56] Hennion, B. Tangent Lie algebra of derived Artin stacks. Preprint arXiv:1312.3167. · Zbl 1423.14011
[57] Hinich, V. DG-coalgebras as formal stacks. J. Pure Appl. Algebra 162 (2001), no. 2-3, 209-250. · Zbl 1020.18007 · doi:10.1016/S0022-4049(00)00121-3
[58] Hirschowitz, A; Simpson, C. Descente pour les n-champs (Descent for n-stacks). Preprint arXiv math/9807049.
[59] Hopkins, M; Algebraic topology and modular forms. Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002), 291-317, Higher Ed. Press, Beijing, 2002. · Zbl 1031.55007
[60] Hopkins, M. J.; Smith, J. H. Nilpotence and stable homotopy theory. II. Ann. of Math. (2) 148 (1998), no. 1, 1-49. · Zbl 0927.55015 · doi:10.2307/120991
[61] Hovey, M. Model categories. Mathematical Surveys and Monographs, 63. American Mathe- matical Society, Providence, RI, 1999. xii+209 pp. [71] Illusie, L. Complexe cotangent et déformations. I. Lecture Notes in Mathematics, Vol. 239. Springer-Verlag, Berlin-New York, 1971. xv+355 pp. [72] Johnson-Freyd, T. Poisson AKSZ theories and their quantizations. Preprint arXiv:1307.5812.
[62] Kapranov, M. Rozansky-Witten invariants via Atiyah classes. Compositio Math. 115 (1999), no. 1, 71-113. · Zbl 0993.53026 · doi:10.1023/A:1000664527238
[63] Katzarkov, L; Kontsevich, M.; Pantev, T. Hodge theoretic aspects of mirror symmetry. From Hodge theory to integrability and TQFT tt*-geometry, 87-174, Proc. Sympos. Pure Math., 78, Amer. Math. Soc., Providence, RI, 2008. · Zbl 1206.14009
[64] Kapustin, A. Topological field theory, higher categories, and their applications. Proceedings of the International Congress of Mathematicians. Volume III, 2021-2043, Hindustan Book Agency, New Delhi, 2010. · Zbl 1233.57018
[65] Keller, B. On differential graded categories. International Congress of Mathematicians. Vol. II, 151-190, Eur. Math. Soc., Zürich, 2006. · Zbl 1140.18008
[66] Kodaira, K.; Spencer, D. C. On deformations of complex analytic structures. I, II. Ann. of Math. (2) 67 1958 328-466. 237 · Zbl 1307.14016 · doi:10.2307/1969867
[67] Kontsevich, M. Enumeration of rational curves via torus actions. The moduli space of curves (Texel Island, 1994), 335-368, Progr. Math., 129, Birkhäuser Boston, Boston, MA, 1995. · Zbl 0885.14028
[68] Kontsevich, M. Deformation quantization of algebraic varieties. EuroConférence Moshé Flato 2000, Part III (Dijon). Lett. Math. Phys. 56 (2001), no. 3, 271-294. · Zbl 1081.14500 · doi:10.1023/A:1017957408559
[69] Kontsevich, M. Operads and motives in deformation quantization. Moshé Flato (1937-1998). Lett. Math. Phys. 48 (1999), no. 1, 35-72. · Zbl 0945.18008 · doi:10.1023/A:1007555725247
[70] Kontsevich, M.; Soibelman, Y. Homological mirror symmetry and torus fibrations. Symplec- tic geometry and mirror symmetry (Seoul, 2000), 203-263, World Sci. Publ., River Edge, NJ, 2001. · Zbl 1072.14046
[71] Kostant, B. Graded manifolds, graded Lie theory, and prequantization. Differential geomet- rical methods in mathematical physics (Proc. Sympos., Univ. Bonn, Bonn, 1975), pp. 177- 306. Lecture Notes in Math., Vol. 570, Springer, Berlin, 1977. · Zbl 0358.53024
[72] Laumon, G.; Moret-Bailly, L. Champs algébriques. A Series of Modern Surveys in Mathe- matics, 39. Springer-Verlag, Berlin, 2000. xii+208 pp. [84] Leinster, T. A survey of definitions of n-category. Theory Appl. Categ. 10 (2002), 1-70.
[73] Lichtenbaum, S.; Schlessinger, M. The cotangent complex of a morphism. Trans. Amer. Math. Soc. 128 1967 41-70. · Zbl 0156.27201 · doi:10.2307/1994516
[74] Loday, J.-L. Cyclic homology. Grundlehren der Mathematischen Wissenschaften 301. Springer-Verlag, Berlin, 1992. xviii+454 pp. [87] Lowrey, P; Schürg, T. Grothendieck-Riemann-Roch for derived schemes. Parker Lowrey, Timo Schürg. Preprint arXiv:1208.6325.
[75] Lurie, J. Moduli problems for ring spectra. Proceedings of the International Congress of Mathematicians. Volume II, 1099-1125, Hindustan Book Agency, New Delhi, 2010. · Zbl 1244.55007
[76] Lurie, J. Higher topos theory. Annals of Mathematics Studies, 170. Princeton University Press, Princeton, NJ, 2009. xviii+925 pp. [90] Lurie, J. Derived algebraic geometry. Thesis, 2003. · Zbl 1175.18001
[77] Lurie, J. The ”DAG” series. Available at the author’s home page:
[78] Lurie, J. A survey of elliptic cohomology. Algebraic topology, 219-277, Abel Symp., 4, Springer, Berlin, 2009. · Zbl 1206.55007 · doi:10.1007/978-3-642-01200-6_9
[79] McCarthy, R.; Minasian, V. HKR theorem for smooth S-algebras. (English summary) J. Pure Appl. Algebra 185 (2003), no. 1-3, 239-258. · Zbl 1051.55005 · doi:10.1016/S0022-4049(03)00089-6
[80] Manetti, M. Extended deformation functors. Int. Math. Res. Not. 2002, no. 14, 719-756. · Zbl 1063.58007 · doi:10.1155/S1073792802008024
[81] Morava, J. Forms of K-theory. Math. Z. 201 (1989), no. 3, 401-428. · Zbl 0709.55003 · doi:10.1007/BF01214905
[82] Pantev, T.; Toën, B.; Vaquié, M.; Vezzosi, G. Shifted symplectic structures. Publ. Math. Inst. Hautes Études Sci. 117 (2013), 271-328. · Zbl 1328.14027 · doi:10.1007/s10240-013-0054-1
[83] Pecharich, J. The Derived Marsden-Weinstein Quotient is Symplectic. Preprint arXiv:1205.6519.
[84] Pirashvili, T. Hodge decomposition for higher order Hochschild homology. Ann. Sci. École Norm. Sup. (4) 33 (2000), no. 2, 151-179. · Zbl 0957.18004 · doi:10.1016/S0012-9593(00)00107-5
[85] Pirashvili, T.; Waldhausen, F. Mac Lane homology and topological Hochschild homology. J. Pure Appl. Algebra 82 (1992), no. 1, 81-98. Bertrand Toën · Zbl 0767.55010 · doi:10.1016/0022-4049(92)90012-5
[86] Preygel, A. Ind-coherent complexes on loop spaces and connections. Preprint available at: · Zbl 1345.14024
[87] Pridham, J. P. Representability of derived stacks. J. K-Theory 10 (2012), no. 2, 413-453. · Zbl 1257.14009 · doi:10.1017/is012001005jkt179
[88] Quillen, D. On the (co-)homology of commutative rings. 1970 Applications of Categorical Algebra (Proc. Sympos. Pure Math., Vol. XVII, New York, 1968) pp. 65-87. Amer. Math. Soc., Providence, R.I. · Zbl 0234.18010
[89] Quillen, D. Homotopical algebra. Lecture Notes in Mathematics, No. 43 Springer-Verlag, Berlin-New York 1967 iv+156 pp. [104] Ravenel, D. C. Nilpotence and Periodicity in Stable Homotopy Theor. Ann. of Math. Studies, vol. 128, Princeton University Press, Princeton, NJ, 1992.
[90] Rezk, C. A Cartesian presentation of weak n-categories. Geom. Topol. 14 (2010), no. 1, 521-571. · Zbl 1203.18015 · doi:10.2140/gt.2010.14.521
[91] Rognes, J. Galois extensions of structured ring spectra. Stably dualizable groups. Mem. Amer. Math. Soc. 192 (2008), no. 898, viii+137 pp. [107] Safronov, P. Quasi-Hamiltonian reduction via classical Chern-Simons theory. Thesis (preprint arXiv:1311.6429). · Zbl 1166.55001
[92] Schlessinger, M. Functors of Artin rings. Trans. Amer. Math. Soc. 130 1968 208-222. · Zbl 0167.49503 · doi:10.2307/1994967
[93] Schlessinger, M.; Stasheff, J. The Lie algebra structure of tangent cohomology and deforma- tion theory. J. Pure Appl. Algebra 38 (1985), no. 2-3, 313-322. · Zbl 0576.17008 · doi:10.1016/0022-4049(85)90019-2
[94] Schürg, T. Deriving Deligne-Mumford stacks with perfect obstruction theories. Geom. Topol. 17 (2013), no. 1, 73-92. · Zbl 1266.14006 · doi:10.2140/gt.2013.17.73
[95] Schürg, T; Toën, B.; Vezzosi, G. Derived algebraic geometry, determinants of perfect com- plexes, and applications to obstruction theories for maps and complexes. To appear in Journal für die reine und angewandte Mathematik (Crelle), DOI: 10.1515/crelle-2013-0037.
[96] Sagave, S.; Schürg, T; Vezzosi, G. Lorarithmic derived geometry. To appear in Journal de l’IMJ. · Zbl 1344.14002
[97] Schwänzl, R.; Vogt, R. M.; Waldhausen, F. Topological Hochschild homology. J. London Math. Soc. (2) 62 (2000), no. 2, 345-356. · Zbl 1047.55005 · doi:10.1112/S0024610700008929
[98] Schwänzl, R.; Vogt, R. M.; Waldhausen, F. Adjoining roots of unity to E\infty ring spectra in good cases-a remark. Homotopy invariant algebraic structures (Baltimore, MD, 1998), 245-249, Contemp. Math., 239, Amer. Math. Soc., Providence, RI, 1999. · Zbl 0944.55006
[99] Schwarz, A. Geometry of Batalin-Vilkovisky quantization. Comm. Math. Phys. 155 (1993), no. 2, 249-260. · Zbl 0786.58017 · doi:10.1007/BF02097392
[100] Schwarz, A. Semiclassical approximation in Batalin-Vilkovisky formalism. Comm. Math. Phys. 158 (1993), no. 2, 373-396. · Zbl 0855.58005 · doi:10.1007/BF02108080
[101] Serre, J.-P. Algèbre locale. Multiplicités. Lecture Notes in Mathematics, 11 Springer-Verlag, Berlin-New York 1965 vii+188 pp. [118] Théorie des topos et cohomologie étale des schémas. Tome 1: Théorie des topos. Sémi- naire de Géométrie Algébrique du Bois-Marie 1963-1964 (SGA 4). Dirigé par M. Artin, A. Grothendieck, et J. L. Verdier. Avec la collaboration de N. Bourbaki, P. Deligne et B. Saint- Donat. Lecture Notes in Mathematics, Vol. 269. Springer-Verlag, Berlin-New York, 1972. xix+525 pp. 239
[102] Simpson, C. Algebraic (geometric) n-stacks. preprint arXiv alg-geom/9609014.
[103] Simpson, C. Algebraic aspects of higher non-abelian Hodge theory. Motives, polylogarithms and Hodge theory, Part II (Irvine, CA, 1998), 417-604, Int. Press Lect. Ser., 3, II, Int. Press, Somerville, MA, 2002. · Zbl 1051.14008
[104] Simpson, C. Geometricity of the Hodge filtration on the \infty -stack of perfect complexes over XDR. Mosc. Math. J. 9 (2009), no. 3, 665-721. · Zbl 1189.14020
[105] Simpson, C. A closed model structure for n-categories, internal Hom, n-stacks and gener- alized Seifert-Van Kampen. Preprint arXiv alg-geom/9704006.
[106] Simpson, C. Homotopy theory of higher categories. New Mathematical Monographs, 19. Cambridge University Press, Cambridge, 2012. xviii+634 pp. [124] Schwede, S.; Shipley, B. Equivalences of monoidal model categories. Algebr. Geom. Topol. 3 (2003), 287-334. · Zbl 1028.55013 · doi:10.2140/agt.2003.3.287
[107] Tamarkin, D. Deformation complex of a d-algebra is a (d+1)-algebra. Preprint arXiv math/0010072.
[108] The Univalent Foundations Program, Homotopy Type Theory: Univalent Foundations of Mathematics. Book available at:
[109] Toën, B. Champs affines. Selecta Math. (N.S.) 12 (2006), no. 1, 39-135. · Zbl 1108.14004 · doi:10.1007/s00029-006-0019-z
[110] Toën, B. Higher and derived stacks: a global overview. Algebraic geometry: Seattle 2005. Part 1, 435-487, Proc. Sympos. Pure Math., 80, Part 1, Amer. Math. Soc., Providence, RI, 2009. · Zbl 1183.14001
[111] Toën, B. Derived Azumaya algebras and generators for twisted derived categories. Invent. Math. 189 (2012), no. 3, 581-652. · Zbl 1275.14017 · doi:10.1007/s00222-011-0372-1
[112] Toën, B. Proper local complete intersection morphisms preserve perfect complexes. Preprint arXiv:1210.2827.
[113] Toën, B. Operations on derived moduli spaces of branes. Preprint arXiv:1307.0405.
[114] Toën, B. Derived algebraic geometry and deformation quantization. ICM lecture (Séoul 2014), Preprint arXiv:1403.6995.
[115] Toën, B. Lectures on dg-categories. Topics in algebraic and topological K-theory, 243-302, Lecture Notes in Math., 2008, Springer, Berlin, 2011.
[116] Toën, B.; Vaquié, M. Moduli of objects in dg-categories. Ann. Sci. École Norm. Sup. (4) 40 (2007), no. 3, 387-444. · Zbl 1140.18005 · doi:10.1016/j.ansens.2007.05.001
[117] Toën, B.; Vaquié, M. Au-dessous de Spec Z. J. K-Theory 3 (2009), no. 3, 437-500. · Zbl 1177.14022 · doi:10.1017/is008004027jkt048
[118] Toën, B.; Vezzosi, G. From HAG to DAG: derived moduli stacks. Axiomatic, enriched and motivic homotopy theory, 173-216, NATO Sci. Ser. II Math. Phys. Chem., 131, Kluwer Acad. Publ., Dordrecht, 2004. · Zbl 1076.14002
[119] Toën, B.; Vezzosi, G. Homotopical algebraic geometry. I. Topos theory. Adv. Math. 193 (2005), no. 2, 257-372. · Zbl 1120.14012 · doi:10.1016/j.aim.2004.05.004
[120] Toën, B.; Vezzosi, G. Homotopical algebraic geometry. II. Geometric stacks and applica- tions. Mem. Amer. Math. Soc. 193 (2008), no. 902, x+224 pp. [139] Toën, B.; Vezzosi, G. A remark on K-theory and S-categories. Topology 43 (2004), no. 4, 765-791. Bertrand Toën · Zbl 1054.55004
[121] Toën, B.; Vezzosi, G. Algèbres simpliciales S1-équivariantes, théorie de de Rham et théorèmes HKR multiplicatifs. Compos. Math. 147 (2011), no. 6, 1979-2000.
[122] Toën, B.; Vezzosi, G. Caractères de Chern, traces équivariantes et géométrie algébrique dérivée. To appear in Selecta.
[123] Tsygan, B. On the Gauss-Manin connection in cyclic homology. Methods Funct. Anal. Topol- ogy 13 (2007), no. 1, 83-94. · Zbl 1116.18010
[124] Vezzosi, G. Derived critical loci - Basics. Preprint arXiv:1109.5213.
[125] Vezzosi, G. A model structure on relative dg-Lie algebroids. Preprint arXiv:1304.6049. · Zbl 1367.17014
[126] Vogt, R. M. Introduction to algebra over ”brave new rings”. The 18th Winter School ”Geom- etry and Physics” (Srni, 1998). Rend. Circ. Mat. Palermo (2) Suppl. No. 59 (1999), 49-82. · Zbl 0969.55003
[127] Waldhausen, F. Algebraic K-theory of spaces. Algebraic and geometric topology (New Brunswick, N.J., 1983), 318-419, Lecture Notes in Math., 1126, Springer, Berlin, 1985. · Zbl 0579.18006
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.