×

Noncommutative del Pezzo surfaces and Calabi-Yau algebras. (English) Zbl 1204.14004

Let \(A={\mathbb C}[x_1,x_2,x_3]\) be the polynomial \({\mathbb C}\)-algebra in 3 variables, \(t\) a non-zero complex number and choose a polynomial \(\Phi_k\in {\mathbb C}[x_k]\) for each \(1\leq k\leq 3\). Then the noncommutative \({\mathbb C}\)-algebras \({\mathcal U}^t(\Phi)\) generated by \(x_1,x_2,x_3\) with the relations: \(x_1x_2-tx_2x_1=\Phi_3(x_3)\), \(x_2x_3-tx_2x_1=\Phi_1(x_1)\), \(x_3x_1-tx_1x_3=\Phi_2(x_2)\) are noncommutative deformations of \(A\) and form a family of Calabi-Yau algebras. Here it constructs a deformation-quantization of the coordinate ring of a del Pezzo surface of type \(E_r\), \(6\leq r\leq 8\) considering noncommutative algebras of the form \({\mathcal U}^t(\Phi)/\langle\langle\Psi\rangle\rangle\), where \(\langle\langle\Psi\rangle\rangle\) is the ideal generated by a central element \(\Psi\), which generates the center of \({\mathcal U}^t(\Phi)\) if \(\Phi\) is generic enough. Also it shows that the family of del Pezzo surfaces of type \(E_r\) provides a semiuniversal Poisson deformation of the Poisson structure inherited by hypersurfaces in \({\mathbb C}^3\) with an isolated quasi-homogeneous elliptic singularity of type \(E_r\).

MSC:

14B07 Deformations of singularities
14H52 Elliptic curves
14J32 Calabi-Yau manifolds (algebro-geometric aspects)
13C14 Cohen-Macaulay modules

References:

[1] Artin, M.: Some problems on three-dimensional graded domains. In: Representation The- ory and Algebraic Geometry, London Math. Soc. Lecture Note Ser. 238, Cambridge Univ. Press, 1-19 (1997) · Zbl 0888.16025
[2] Artin, M., Schelter, W.: Graded algebras of global dimension 3. Adv. Math. 66, 171-216 (1987) · Zbl 0633.16001 · doi:10.1016/0001-8708(87)90034-X
[3] Artin, M., Tate, J., Van den Bergh, M.: Some algebras associated to automorphisms of el- liptic curves. In: The Grothendieck Festschrift, Vol. I, Progr. Math. 86, Birkhäuser Boston, 33-85 (1990) · Zbl 0744.14024
[4] Artin, M.: Van den Bergh, M.: Twisted homogeneous coordinate rings. J. Algebra 133, 249-271 (1990) · Zbl 0717.14001 · doi:10.1016/0021-8693(90)90269-T
[5] Berger, R., Taillefer, R.: Poincaré-Birkhoff-Witt deformations of Calabi-Yau algebras. J. Noncommutative Geom. 1, 241-270 (2007) · Zbl 1161.16022 · doi:10.4171/JNCG/6
[6] Bocklandt, R.: Graded Calabi Yau algebras of dimension 3. J. Pure Appl. Algebra 212, 14-32 (2008) · Zbl 1132.16017 · doi:10.1016/j.jpaa.2007.03.009
[7] Brieskorn, E.: Singular elements of semi-simple algebraic groups. In: Actes du Congr‘es International des Mathématiciens (Nice, 1970), Tome 2, Gauthier-Villars, Paris, 279-284 (1971) · Zbl 0223.22012
[8] Le Bruyn, L., Smith, P., Van den Bergh, M.: Central extensions of three-dimensional Artin-Schelter regular algebras. Math. Z. 222, 171-212 (1996) · Zbl 0876.17019 · doi:10.1007/PL00004532
[9] Brylinski, J.-L.: A differential complex for Poisson manifolds. J. Differential Geom. 28, 93-114 (1988) · Zbl 0634.58029
[10] Calaque, D., Van den Bergh, M.: Hochschild cohomology and Atiyah classes. Adv. Math. 224, 1839-1889 (2010) · Zbl 1197.14017 · doi:10.1016/j.aim.2010.01.012
[11] Cassidy, T.: Global dimension 4 extensions of Artin-Schelter regular algebras. J. Algebra 220, 225-254 (1999) · Zbl 0942.16050 · doi:10.1006/jabr.1999.7902
[12] Cassidy, T.: Central extensions of Stephenson’s algebras. Comm. Algebra 31, 1615-1632 (2003) · Zbl 1061.16045 · doi:10.1081/AGB-120018499
[13] Chan, D., Kulkarni, R.: Del Pezzo orders on projective surfaces. Adv. Math. 173, 144-177 (2003) · Zbl 1051.14005 · doi:10.1016/S0001-8708(02)00020-8
[14] Crawley-Boevey, W., Etingof, P., Ginzburg, V.: Noncommutative geometry and quiver algebras. Adv. Math. 209, 274-336 (2007) · Zbl 1111.53066 · doi:10.1016/j.aim.2006.05.004
[15] Demazure, M., et al. (eds.): Séminaire sur les Singularités des Surfaces, 1976-1977. Lec- ture Notes in Math. 777, Springer (1980)
[16] Dolgushev, V.: The Van den Bergh duality and the modular symmetry of a Poisson variety. Selecta Math. (N.S.) 14, 199-228 (2009) · Zbl 1172.53054 · doi:10.1007/s00029-008-0062-z
[17] Eisenbud, D.: Homological algebra on a complete intersection, with an application to group representations. Trans. Amer. Math. Soc. 260, 35-64 (1980) · Zbl 0444.13006 · doi:10.2307/1999875
[18] Etingof, P., Ginzburg, V.: Noncommutative complete intersections and matrix integrals. Pure Appl. Math. Quart. 3, 107-151 (2007) · Zbl 1151.14006 · doi:10.4310/PAMQ.2007.v3.n1.a4
[19] Etingof, P., Oblomkov, A., Rains, E.: Generalized double affine Hecke algebras of rank 1 and quantized del Pezzo surfaces. Adv. Math. 212, 749-796 (2007) · Zbl 1118.14003 · doi:10.1016/j.aim.2006.11.008
[20] Ginzburg, V.: Calabi-Yau algebras. arXiv:math.AG/0612139
[21] Ginzburg, V., Kaledin, D.: Poisson deformations of symplectic quotient singularities. Adv. Math. 186, 1-57 (2004) · Zbl 1062.53074 · doi:10.1016/j.aim.2003.07.006
[22] Kajiura, H., Saito, K., Takahashi, A.: Matrix factorizations and representations of quivers II: type ADE case. Adv. Math. 211, 327-362 (2007) · Zbl 1167.16011 · doi:10.1016/j.aim.2006.08.005
[23] Kaledin, D.: On the coordinate ring of a projective Poisson scheme. Math. Res. Lett. 13, 99-107 (2006) · Zbl 1090.53064 · doi:10.4310/MRL.2006.v13.n1.a8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.