×

Modern Koopman theory for dynamical systems. (English) Zbl 1497.37105

Summary: The field of dynamical systems is being transformed by the mathematical tools and algorithms emerging from modern computing and data science. First-principles derivations and asymptotic reductions are giving way to data-driven approaches that formulate models in operator-theoretic or probabilistic frameworks. Koopman spectral theory has emerged as a dominant perspective over the past decade, in which nonlinear dynamics are represented in terms of an infinite-dimensional linear operator acting on the space of all possible measurement functions of the system. This linear representation of nonlinear dynamics has tremendous potential to enable the prediction, estimation, and control of nonlinear systems with standard textbook methods developed for linear systems. However, obtaining finite-dimensional coordinate systems and embeddings in which the dynamics appear approximately linear remains a central open challenge. The success of Koopman analysis is due primarily to three key factors: (1) there exists rigorous theory connecting it to classical geometric approaches for dynamical systems; (2) the approach is formulated in terms of measurements, making it ideal for leveraging big data and machine learning techniques; and (3) simple, yet powerful numerical algorithms, such as the dynamic mode decomposition (DMD), have been developed and extended to reduce Koopman theory to practice in real-world applications. In this review, we provide an overview of modern Koopman operator theory, describing recent theoretical and algorithmic developments and highlighting these methods with a diverse range of applications. We also discuss key advances and challenges in the rapidly growing field of machine learning that are likely to drive future developments and significantly transform the theoretical landscape of dynamical systems.

MSC:

37M99 Approximation methods and numerical treatment of dynamical systems
37C10 Dynamics induced by flows and semiflows
37N35 Dynamical systems in control
47A35 Ergodic theory of linear operators
47B33 Linear composition operators
34A34 Nonlinear ordinary differential equations and systems

References:

[1] M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, The inverse scattering transform. Fourier analysis for nonlinear problems, Stud. Appl. Math., 53 (1974), pp. 249-315. · Zbl 0408.35068
[2] M. J. Ablowitz and H. Segur, Solitons and the Inverse Scattering Transform, Stud. Appl. Numer. Math. 4, SIAM, Philadelphia, 1981, https://doi.org/10.1137/1.9781611970883. · Zbl 0472.35002
[3] I. Abraham, G. de la Torre, and T. Murphey, Model-based control using Koopman operators, in Proceedings of Robotics: Science and Systems, Cambridge, MA, 2017, https://doi.org/10.15607/RSS.2017.XIII.052.
[4] I. Abraham and T. D. Murphey, Active learning of dynamics for data-driven control using Koopman operators, IEEE Trans. Robotics, 35 (2019), pp. 1071-1083.
[5] R. Abraham, J. E. Marsden, and T. Ratiu, Manifolds, Tensor Analysis, and Applications, Appl. Math. Sci. 75, Springer-Verlag, 1988. · Zbl 0875.58002
[6] M. Agrawal, S. Vidyashankar, and K. Huang, On-chip implementation of ECoG signal data decoding in brain-computer interface, in the 2016 IEEE 21st International Mixed-Signal Testing Workshop (IMSTW), IEEE, 2016, pp. 1-6.
[7] A. Albarakati, M. Budišić, R. Crocker, J. Glass-Klaiber, S. Iams, J. Maclean, N. Marshall, C. Roberts, and E. S. Van Vleck, Model and data reduction for data assimilation: Particle filters employing projected forecasts and data with application to a shallow water model, Comput. Math. Appl., (2021), https://doi.org/10.1016/j.camwa.2021.05.026. · Zbl 1524.62464
[8] M. Alfatlawi and V. Srivastava, An incremental approach to online dynamic mode decomposition for time-varying systems with applications to EEG data modeling, J. Comput. Dynam., 7 (2020), pp. 209-241. · Zbl 1450.37080
[9] F. Allgöwer, R. Findeisen, and Z. K. Nagy, Nonlinear model predictive control: From theory to application, J. Chin. Inst. Chem. Engrs., 35 (2004), pp. 299-315.
[10] A. Amini, Q. Sun, and N. Motee, Carleman state feedback control design of a class of nonlinear control systems, IFAC PapersOnLine, 52-20 (2019), pp. 229-234.
[11] A. R. Ansari and T. D. Murphey, Sequential action control: Closed form optimal control for nonlinear and nonsmooth systems, IEEE Trans. Robotics, 32 (2016), pp. 1196-1214.
[12] I. Antoniou, L. Dmitrieva, Y. Kuperin, and Y. Melnikov, Resonances and the extension of dynamics to rigged Hilbert space, Comput. Math. Appl., 34 (1997), pp. 399-425, https://doi.org/10.1016/S0898-1221(97)00148-X. · Zbl 0897.47012
[13] I. Antoniou, B. Qiao, and Z. Suchanecki, Generalized spectral decomposition and intrinsic irreversibility of the Arnold Cat Map, Chaos Solitons Fractals, 8 (1997), pp. 77-90, https://doi.org/10.1016/S0960-0779(96)00056-2. · Zbl 0919.58047
[14] A. Apte, C. K. R. T. Jones, A. M. Stuart, and J. Voss, Data assimilation: Mathematical and statistical perspectives, Internat. J. Numer. Methods Fluids, 56 (2008), pp. 1033-1046, https://doi.org/10.1002/fld.1698. · Zbl 1384.62300
[15] H. Arbabi, M. Korda, and I. Mezić, A data-driven Koopman model predictive control framework for nonlinear partial differential equations, in Proceedings of the 57th IEEE Conference on Decision and Control (CDC), IEEE, 2018, pp. 6409-6414.
[16] H. Arbabi and I. Mezić, Ergodic theory, dynamic mode decomposition, and computation of spectral properties of the Koopman operator, SIAM J. Appl. Dyn. Syst., 16 (2017), pp. 2096-2126, https://doi.org/10.1137/17M1125236. · Zbl 1381.37096
[17] L. Arnold, Random Dynamical Systems, Springer Monogr. Math., Springer-Verlag, Berlin, Heidelberg, 1998, https://doi.org/10.1007/978-3-662-12878-7. · Zbl 0906.34001
[18] T. Askham and J. N. Kutz, Variable projection methods for an optimized dynamic mode decomposition, SIAM J. Appl. Dyn. Syst., 17 (2018), pp. 380-416, https://doi.org/10.1137/M1124176. · Zbl 1384.37122
[19] I. Assani, Spectral characterization of Wiener-Wintner dynamical systems, Ergodic Theory Dynam. Systems, 24 (2004), pp. 347-365, https://doi.org/10.1017/S0143385703000324. · Zbl 1070.37001
[20] O. Azencot, N. B. Erichson, V. Lin, and M. Mahoney, Forecasting sequential data using consistent Koopman autoencoders, in International Conference on Machine Learning, PMLR, 2020, pp. 475-485.
[21] O. Azencot, W. Yin, and A. Bertozzi, Consistent dynamic mode decomposition, SIAM J. Appl. Dyn. Syst., 18 (2019), pp. 1565-1585, https://doi.org/10.1137/18M1233960. · Zbl 1428.37098
[22] P. J. Baddoo, B. Herrmann, B. J. McKeon, and S. L. Brunton, Kernel Learning for Robust Dynamic Mode Decomposition: Linear and Nonlinear Disambiguation Optimization (LANDO), preprint, https://arxiv.org/abs/2106.01510, 2021.
[23] S. Bagheri, Koopman-mode decomposition of the cylinder wake, J. Fluid Mech., 726 (2013), pp. 596-623. · Zbl 1287.76116
[24] S. Bagheri, Effects of weak noise on oscillating flows: Linking quality factor, Floquet modes, and Koopman spectrum, Phys. Fluids, 26 (2014), art. 094104, https://doi.org/10.1063/1.4895898.
[25] Z. Bai, E. Kaiser, J. L. Proctor, J. N. Kutz, and S. L. Brunton, Dynamic mode decomposition for compressive system identification, AIAA J., 58 (2020), pp. 561-574.
[26] M. Balabane, M. A. Mendez, and S. Najem, Koopman operator for Burgers’s equation, Phys. Rev. Fluids, 6 (2021), art. 064401.
[27] S. Banks, Infinite-dimensional Carleman linearization, the Lie series and optimal control of non-linear partial differential equations, Internat. J. Syst. Sci., 23 (1992), pp. 663-675. · Zbl 0760.34009
[28] Y. Bar-Sinai, S. Hoyer, J. Hickey, and M. P. Brenner, Learning data-driven discretizations for partial differential equations, Proc. Natl. Acad. Sci. USA, 116 (2019), pp. 15344-15349. · Zbl 1431.65195
[29] J. Basley, L. R. Pastur, N. Delprat, and F. Lusseyran, Space-time aspects of a three-dimensional multi-modulated open cavity flow, Phys. Fluids, 25 (2013), art. 064105.
[30] J. Basley, L. R. Pastur, F. Lusseyran, T. M. Faure, and N. Delprat, Experimental investigation of global structures in an incompressible cavity flow using time-resolved PIV, Exp. Fluids, 50 (2011), pp. 905-918.
[31] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez, V. Zambaldi, M. Malinowski, A. Tacchetti, D. Raposo, A. Santoro, R. Faulkner et al., Relational Inductive Biases, Deep Learning, and Graph Networks, preprint, https://arxiv.org/abs/1806.01261, 2018.
[32] S. Beetham and J. Capecelatro, Formulating turbulence closures using sparse regression with embedded form invariance, Phys. Rev. Fluids, 5 (2020), art. 084611.
[33] S. Beetham, R. O. Fox, and J. Capecelatro, Sparse identification of multiphase turbulence closures for coupled fluid-particle flows, J. Fluid Mech., 914 (2021), art. A11. · Zbl 1461.76097
[34] G. Bellani, Experimental Studies of Complex Flows through Image-Based Techniques, Ph.D. dissertation, KTH Royal Institute of Technology, Stockholm, Sweden, 2011.
[35] P. Benner, P. Goyal, B. Kramer, B. Peherstorfer, and K. Willcox, Operator inference for non-intrusive model reduction of systems with non-polynomial nonlinear terms, Comput. Methods Appl. Mech. Engrg., 372 (2020), art. 113433. · Zbl 1506.93015
[36] P. Benner, S. Gugercin, and K. Willcox, A survey of projection-based model reduction methods for parametric dynamical systems, SIAM Rev., 57 (2015), pp. 483-531, https://doi.org/10.1137/130932715. · Zbl 1339.37089
[37] P. Benner, C. Himpe, and T. Mitchell, On reduced input-output dynamic mode decomposition, Adv. Comput. Math., 44 (2018), pp. 1751-1768. · Zbl 1405.93051
[38] M. Benosman, H. Mansour, and V. Huroyan, Koopman-operator observer-based estimation of pedestrian crowd flows, IFAC-PapersOnLine, 50 (2017), pp. 14028-14033.
[39] E. Berger, M. Sastuba, D. Vogt, B. Jung, and H. B. Amor, Estimation of perturbations in robotic behavior using dynamic mode decomposition, J. Adv. Robotics, 29 (2015), pp. 331-343.
[40] G. D. Birkhoff, Proof of the ergodic theorem, Proc. Natl. Acad. Sci. USA, 17 (1931), pp. 656-660. · JFM 57.1011.02
[41] G. D. Birkhoff and B. O. Koopman, Recent contributions to the ergodic theory, Proc. Natl. Acad. Sci. USA, 18 (1932), pp. 279-282. · JFM 58.1271.02
[42] D. Bistrian and I. Navon, Randomized dynamic mode decomposition for non-intrusive reduced order modelling, Internat. J. Numer. Methods Engrg., 112 (2016), pp. 3-25. · Zbl 07867129
[43] D. A. Bistrian and I. M. Navon, An improved algorithm for the shallow water equations model reduction: Dynamic mode decomposition vs POD, Internat. J. Numer. Methods Fluids, 78 (2015), pp. 552-580.
[44] A. Bittracher, P. Koltai, and O. Junge, Pseudogenerators of spatial transfer operators, SIAM J. Appl. Dyn. Syst., 14 (2015), pp. 1478-1517, https://doi.org/10.1137/14099872X. · Zbl 1322.82011
[45] E. Bollt, Geometric considerations of a good dictionary for Koopman analysis of dynamical systems: Cardinality, “primary eigenfunction,” and efficient representation, Comm. Nonlinear Sci. Numer. Simul., 100 (2021), art. 105833. · Zbl 1467.37083
[46] E. M. Bollt, Q. Li, F. Dietrich, and I. Kevrekidis, On matching, and even rectifying, dynamical systems through Koopman operator eigenfunctions, SIAM J. Appl. Dyn. Syst., 17 (2018), pp. 1925-1960, https://doi.org/10.1137/17M116207X. · Zbl 1408.37010
[47] E. M. Bollt and N. Santitissadeekorn, Applied and Computational Measurable Dynamics, Math. Model. Comput. 18, SIAM, Philadelphia, 2013, https://doi.org/10.1137/1.9781611972641. · Zbl 1417.37008
[48] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, Time Series Analysis: Forecasting and Control, 3rd ed., Prentice-Hall, Englewood Cliffs, NJ, 1994. · Zbl 0858.62072
[49] W. E. Boyce, R. C. DiPrima, and D. B. Meade, Elementary Differential Equations, John Wiley & Sons, 2017.
[50] L. Breiman, Statistical modeling: The two cultures (with comments and a rejoinder by the author), Statist. Sci., 16 (2001), pp. 199-231. · Zbl 1059.62505
[51] M. Brenner, J. Eldredge, and J. Freund, Perspective on machine learning for advancing fluid mechanics, Phys. Rev. Fluids, 4 (2019), art. 100501.
[52] I. Bright, G. Lin, and J. N. Kutz, Compressive sensing and machine learning strategies for characterizing the flow around a cylinder with limited pressure measurements, Phys. Fluids, 25 (2013), pp. 1-15. · Zbl 1320.76003
[53] A. Broad, T. Murphey, and B. Argall, Learning models for shared control of human-machine systems with unknown dynamics, in Robotics: Science and Systems XIII, MIT Press, 2017.
[54] R. W. Brockett, Volterra series and geometric control theory, Automatica, 12 (1976), pp. 167-176. · Zbl 0342.93027
[55] R. W. Brockett, Optimal control of the Liouville equation, in Proceedings of the International Conference on Complex Geometry and Related Fields, AMS/IP Stud. Adv. Math. 39, AMS, 2007, pp. 23-35. · Zbl 1118.49030
[56] D. Broomhead and R. Jones, Time-series analysis, Proc. Roy. Soc. London A, 423 (1989), pp. 103-121. · Zbl 0748.58018
[57] D. Bruder, X. Fu, R. B. Gillespie, C. D. Remy, and R. Vasudevan, Koopman-based control of a soft continuum manipulator under variable loading conditions, IEEE Robotics Automat. Lett., 6 (2021), pp. 6852-6859.
[58] D. Bruder, X. Fu, and R. Vasudevan, Advantages of bilinear Koopman realizations for the modeling and control of systems with unknown dynamics, IEEE Robotics Automat. Lett., 6 (2021), pp. 4369-4376.
[59] D. Bruder, B. Gillespie, C. David Remy, and R. Vasudevan, Modeling and control of soft robots using the Koopman operator and model predictive control, in Robotics: Science and Systems XV, 2019.
[60] B. W. Brunton, L. A. Johnson, J. G. Ojemann, and J. N. Kutz, Extracting spatial-temporal coherent patterns in large-scale neural recordings using dynamic mode decomposition, J. Neurosci. Methods, 258 (2016), pp. 1-15, https://doi.org/10.1016/j.jneumeth.2015.10.010.
[61] S. L. Brunton, B. W. Brunton, J. L. Proctor, E. Kaiser, and J. N. Kutz, Chaos as an intermittently forced linear system, Nature Commun., 8 (2017), pp. 1-9.
[62] S. L. Brunton, B. W. Brunton, J. L. Proctor, and J. N. Kutz, Koopman invariant subspaces and finite linear representations of nonlinear dynamical systems for control, PLoS ONE, 11 (2016), art. e0150171. · Zbl 1355.94013
[63] S. L. Brunton and J. N. Kutz, Data-Driven Science and Engineering: Machine Learning, Dynamical Systems, and Control, Cambridge University Press, 2019. · Zbl 1407.68002
[64] S. L. Brunton, B. R. Noack, and P. Koumoutsakos, Machine learning for fluid mechanics, Annu. Rev. Fluid Mech., 52 (2020), pp. 477-508. · Zbl 1439.76138
[65] S. L. Brunton, J. L. Proctor, and J. N. Kutz, Discovering governing equations from data by sparse identification of nonlinear dynamical systems, Proc. Natl. Acad. Sci. USA, 113 (2016), pp. 3932-3937. · Zbl 1355.94013
[66] S. L. Brunton, J. L. Proctor, J. H. Tu, and J. N. Kutz, Compressed sensing and dynamic mode decomposition, J. Comput. Dynam., 2 (2015), pp. 165-191. · Zbl 1347.94012
[67] S. L. Brunton, J. H. Tu, I. Bright, and J. N. Kutz, Compressive sensing and low-rank libraries for classification of bifurcation regimes in nonlinear dynamical systems, SIAM J. Appl. Dyn. Syst., 13 (2014), pp. 1716-1732, https://doi.org/10.1137/130949282. · Zbl 1354.37078
[68] M. Budišić and I. Mezić, An approximate parametrization of the ergodic partition using time averaged observables, in Proceedings of the 48th IEEE Conference on Decision and Control, held jointly with the 2009 28th Chinese Control Conference (CDC/CCC 2009), IEEE, 2009, pp. 3162-3168.
[69] M. Budišić and I. Mezić, Geometry of the ergodic quotient reveals coherent structures in flows, Phys. D, 241 (2012), pp. 1255-1269, https://doi.org/10.1016/j.physd.2012.04.006. · Zbl 1254.37010
[70] M. Budišić, R. Mohr, and I. Mezić, Applied Koopmanism, Chaos, 22 (2012), art. 047510. · Zbl 1319.37013
[71] J. M. Burgers, A mathematical model illustrating the theory of turbulence, Adv. Appl. Mech., 1 (1948), pp. 171-199.
[72] D. Burov, D. Giannakis, K. Manohar, and A. Stuart, Kernel analog forecasting: Multiscale test problems, Multiscale Model. Simul., 19 (2021), pp. 1011-1040, https://doi.org/10.1137/20M1338289. · Zbl 1487.60088
[73] E. F. Camacho and C. B. Alba, Model Predictive Control, Springer Science & Business Media, 2013.
[74] E. J. Candès, J. Romberg, and T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inform. Theory, 52 (2006), pp. 489-509. · Zbl 1231.94017
[75] T. Caraballo and X. Han, Applied Nonautonomous and Random Dynamical Systems: Applied Dynamical Systems, Springer, 2017. · Zbl 1370.37001
[76] T. Carleman, Application de la théorie des équations intégrales linéaires aux systèmes d’équations différentielles non linéaires, Acta Math., 59 (1932), pp. 63-87. · Zbl 0005.20703
[77] T. Carleman, Sur la théorie de l’équation intégrodifférentielle de Boltzmann, Acta Math., 60 (1933), pp. 91-146. · JFM 59.0404.02
[78] T. Carleman, Sur les systemes lineaires aux dérivées partielles du premier ordrea deux variables, C. R. Acad. Sci. Paris, 197 (1933), pp. 471-474. · JFM 59.0469.03
[79] K. P. Champion, S. L. Brunton, and J. N. Kutz, Discovery of nonlinear multiscale systems: Sampling strategies and embeddings, SIAM J. Appl. Dyn. Syst., 18 (2019), pp. 312-333, https://doi.org/10.1137/18M1188227. · Zbl 1474.65476
[80] M. D. Chekroun, J. D. Neelin, D. Kondrashov, J. C. McWilliams, and M. Ghil, Rough parameter dependence in climate models and the role of Ruelle-Pollicott resonances, Proc. Natl. Acad. Sci. USA, 111 (2014), pp. 1684-1690, https://doi.org/10.1073/pnas.1321816111.
[81] M. D. Chekroun, A. Tantet, H. A. Dijkstra, and J. D. Neelin, Ruelle-Pollicott resonances of stochastic systems in reduced state space. Part I: Theory, J. Statist. Phys., 179 (2020), pp. 1366-1402, https://doi.org/10.1007/s10955-020-02535-x. · Zbl 1460.60050
[82] K. K. Chen, J. H. Tu, and C. W. Rowley, Variants of dynamic mode decomposition: Boundary condition, Koopman, and Fourier analyses, J. Nonlinear Sci., 22 (2012), pp. 887-915. · Zbl 1259.35009
[83] C. Chicone and Y. Latushkin, Evolution Semigroups in Dynamical Systems and Differential Equations, Math. Surveys Monogr. 70, AMS, 1999. · Zbl 0970.47027
[84] R. R. Coifman, I. G. Kevrekidis, S. Lafon, M. Maggioni, and B. Nadler, Diffusion maps, reduction coordinates, and low dimensional representation of stochastic systems, Multiscale Model. Simul., 7 (2008), pp. 842-864, https://doi.org/10.1137/070696325. · Zbl 1175.60058
[85] R. R. Coifman and S. Lafon, Diffusion maps, Appl. Comput. Harmon. Anal., 21 (2006), pp. 5-30. · Zbl 1095.68094
[86] R. R. Coifman, S. Lafon, A. B. Lee, M. Maggioni, B. Nadler, F. Warner, and S. W. Zucker, Geometric diffusions as a tool for harmonic analysis and structure definition of data: Diffusion maps, Proc. Natl. Acad. Sci. USA, 102 (2005), pp. 7426-7431. · Zbl 1405.42043
[87] J. D. Cole, On a quasi-linear parabolic equation occurring in aerodynamics, Quart. Appl. Math., 9 (1951), pp. 225-236. · Zbl 0043.09902
[88] F. Colonius and W. Kliemann, The Dynamics of Control, Birkhäuser Boston, 2000. · Zbl 0998.93502
[89] I. P. Cornfeld, S. V. Fomin, and Y. G. Sinai, Ergodic Theory, Grundlehren Math. Wiss. 245, Springer, New York, 1982. · Zbl 0493.28007
[90] M. Cranmer, S. Greydanus, S. Hoyer, P. Battaglia, D. Spergel, and S. Ho, Lagrangian Neural Networks, preprint, https://arxiv.org/abs/2003.04630, 2020.
[91] M. D. Cranmer, R. Xu, P. Battaglia, and S. Ho, Learning Symbolic Physics with Graph Networks, preprint, https://arxiv.org/abs/1909.05862, 2019.
[92] N. Črnjarić-Žic, S. Maćešić, and I. Mezić, Koopman operator spectrum for random dynamical systems, J. Nonlinear Sci., 30 (2020), pp. 2007-2056, https://doi.org/10.1007/s00332-019-09582-z. · Zbl 1467.37084
[93] P. Cvitanović, R. Artuso, R. Mainieri, G. Tanner, and G. Vattay, Chaos: Classical and Quantum, Niels Bohr Inst., Copenhagen, 2016.
[94] S. Das and D. Giannakis, Delay-coordinate maps and the spectra of Koopman operators, J. Statist. Phys., 175 (2019), pp. 1107-1145. · Zbl 1459.37023
[95] S. Das and D. Giannakis, Koopman spectra in reproducing kernel Hilbert spaces, Appl. Comput. Harmon. Anal., 49 (2020), pp. 573-607, https://doi.org/10.1016/j.acha.2020.05.008. · Zbl 1446.37072
[96] S. Das, D. Giannakis, and J. Slawinska, Reproducing kernel Hilbert space compactification of unitary evolution groups, Appl. Comput. Harmon. Anal., 54 (2021), pp. 75-136, https://doi.org/10.1016/j.acha.2021.02.004. · Zbl 1473.37101
[97] S. T. Dawson, M. S. Hemati, M. O. Williams, and C. W. Rowley, Characterizing and correcting for the effect of sensor noise in the dynamic mode decomposition, Exp. Fluids, 57 (2016), pp. 1-19.
[98] M. Dellnitz, G. Froyland, and O. Junge, The algorithms behind GAIO-set oriented numerical methods for dynamical systems, in Ergodic Theory, Analysis, and Efficient Simulation of Dynamical Systems, Springer, Berlin, 2001, pp. 145-174, 805-807. · Zbl 0998.65126
[99] M. Dellnitz and A. Hohmann, A subdivision algorithm for the computation of unstable manifolds and global attractors, Numer. Math., 75 (1997), pp. 293-317, https://doi.org/10.1007/s002110050240. · Zbl 0883.65060
[100] M. Dellnitz, A. Hohmann, O. Junge, and M. Rumpf, Exploring invariant sets and invariant measures, Chaos, 7 (1997), pp. 221-228, https://doi.org/10.1063/1.166223. · Zbl 0938.37056
[101] M. Dellnitz and O. Junge, On the approximation of complicated dynamical behavior, SIAM J. Numer. Anal., 36 (1999), pp. 491-515, https://doi.org/10.1137/S0036142996313002. · Zbl 0916.58021
[102] N. Demo, M. Tezzele, and G. Rozza, PyDMD: Python dynamic mode decomposition, J. Open Source Softw., 3 (2018), p. 530.
[103] F. Dietrich, T. N. Thiem, and I. G. Kevrekidis, On the Koopman operator of algorithms, SIAM J. Appl. Dyn. Syst., 19 (2020), pp. 860-885, https://doi.org/10.1137/19M1277059. · Zbl 1437.47048
[104] A. S. Dogra and W. T. Redman, Optimizing neural networks via Koopman operator theory, in Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, eds., Curran Associates, 2020, pp. 2087-2097.
[105] D. Donoho, 50 years of data science, J. Comput. Graph. Statist., 26 (2017), pp. 745-766.
[106] D. L. Donoho, Compressed sensing, IEEE Trans. Inform. Theory, 52 (2006), pp. 1289-1306. · Zbl 1288.94016
[107] Z. Drmač and S. Gugercin, A new selection operator for the discrete empirical interpolation method-improved a priori error bound and extensions, SIAM J. Sci. Comput., 38 (2016), pp. A631-A648, https://doi.org/10.1137/15M1019271. · Zbl 1382.65193
[108] Z. Drmač, I. Mezić, and R. Mohr, Data driven modal decompositions: Analysis and enhancements, SIAM J. Sci. Comput., 40 (2018), pp. A2253-A2285, https://doi.org/10.1137/17M1144155. · Zbl 1398.65059
[109] Z. Drmač, I. Mezić, and R. Mohr, Data driven Koopman spectral analysis in Vandermonde-Cauchy form via the DFT: Numerical method and theoretical insights, SIAM J. Sci. Comput., 41 (2019), pp. A3118-A3151, https://doi.org/10.1137/18M1227688. · Zbl 1435.65066
[110] Z. Drmač, I. Mezić, and R. Mohr, On least squares problems with certain Vandermonde-Khatri-Rao structure with applications to DMD, SIAM J. Sci. Comput., 42 (2020), pp. A3250-A3284, https://doi.org/10.1137/19M1288474. · Zbl 1452.65086
[111] D. Duke, D. Honnery, and J. Soria, Experimental investigation of nonlinear instabilities in annular liquid sheets, J. Fluid Mech., 691 (2012), pp. 594-604. · Zbl 1241.76016
[112] D. Duke, J. Soria, and D. Honnery, An error analysis of the dynamic mode decomposition, Exp. Fluids, 52 (2012), pp. 529-542.
[113] R. Dunne and B. J. McKeon, Dynamic stall on a pitching and surging airfoil, Exp. Fluids, 56 (2015), pp. 1-15.
[114] K. Duraisamy, G. Iaccarino, and H. Xiao, Turbulence modeling in the age of data, Annu. Rev. Fluid Mech., 51 (2019), pp. 357-377. · Zbl 1412.76040
[115] D. Dylewsky, M. Tao, and J. N. Kutz, Dynamic mode decomposition for multiscale nonlinear physics, Phys. Rev. E, 99 (2019), art. 063311, https://doi.org/10.1103/PhysRevE.99.063311.
[116] J.-P. Eckmann and D. P. Ruelle, Ergodic theory of chaos and strange attractors, Rev. Modern Phys., 57 (1985), pp. 617-656, https://doi.org/10.1103/RevModPhys.57.617. · Zbl 0989.37516
[117] T. Eisner, B. Farkas, M. Haase, and R. Nagel, Operator Theoretic Aspects of Ergodic Theory, Grad. Texts in Math. 272, Springer, 2015. · Zbl 1353.37002
[118] H. Eivazi, L. Guastoni, P. Schlatter, H. Azizpour, and R. Vinuesa, Recurrent neural networks and Koopman-based frameworks for temporal predictions in a low-order model of turbulence, Internat. J. Heat Fluid Flow, 90 (2021), art. 108816.
[119] J. Eldering, M. Kvalheim, and S. Revzen, Global linearization and fiber bundle structure of invariant manifolds, Nonlinearity, 31 (2018), pp. 4202-4245, https://doi.org/10.1088/1361-6544/aaca8d. · Zbl 1396.37035
[120] U. Eren, A. Prach, B. B. Koçer, S. V. Raković, E. Kayacan, and B. Aç\ikmeşe, Model predictive control in aerospace systems: Current state and opportunities, J. Guidance Control Dynam., 40 (2017), pp. 1541-1566.
[121] N. B. Erichson, S. L. Brunton, and J. N. Kutz, Compressed dynamic mode decomposition for real-time object detection, J. Real-Time Image Process., 16 (2019), pp. 1479-1492.
[122] N. B. Erichson, K. Manohar, S. L. Brunton, and J. N. Kutz, Randomized CP tensor decomposition, Machine Learning Sci. Technol., 1 (2020), art. 025012.
[123] N. B. Erichson, L. Mathelin, J. N. Kutz, and S. L. Brunton, Randomized dynamic mode decomposition, SIAM J. Appl. Dyn. Syst., 18 (2019), pp. 1867-1891. · Zbl 1427.65410
[124] N. B. Erichson, S. Voronin, S. L. Brunton, and J. N. Kutz, Randomized matrix decompositions using R, J. Statist. Software, 89 (2019), pp. 1-48.
[125] G. Evensen, Data Assimilation: The Ensemble Kalman Filter, Springer Science & Business Media, 2009. · Zbl 1395.93534
[126] R. Everson and L. Sirovich, Karhunen-Loeve procedure for gappy data, J. Opt. Soc. Amer. A, 12 (1995), pp. 1657-1664.
[127] M. Farazmand and G. Haller, Computing Lagrangian coherent structures from their variational theory, Chaos, 22 (2012), art. 013128. · Zbl 1331.37128
[128] C. Folkestad and J. W. Burdick, Koopman NMPC: Koopman-based learning and nonlinear model predictive control of control-affine systems, in the 2021 IEEE International Conference on Robotics and Automation (ICRA), IEEE, 2021, pp. 7350-7356.
[129] C. Folkestad, Y. Chen, A. D. Ames, and J. W. Burdick, Data-driven safety-critical control: Synthesizing control barrier functions with Koopman operators, IEEE Control Syst. Lett., 5 (2020), pp. 2012-2017.
[130] C. Folkestad, D. Pastor, and J. W. Burdick, Episodic Koopman learning of nonlinear robot dynamics with application to fast multirotor landing, in 2020 IEEE International Conference on Robotics and Automation (ICRA), 2020, pp. 9216-9222.
[131] C. Folkestad, D. Pastor, I. Mezić, R. Mohr, M. Fonoberova, and J. Burdick, Extended dynamic mode decomposition with learned Koopman eigenfunctions for prediction and control, in the 2020 American Control Conference (ACC), IEEE, 2020, pp. 3906-3913.
[132] A. D. Fontanini, U. Vaidya, and B. Ganapathysubramanian, A methodology for optimal placement of sensors in enclosed environments: A dynamical systems approach, Building Environ., 100 (2016), pp. 145-161.
[133] G. Froyland and M. Dellnitz, Detecting and locating near-optimal almost-invariant sets and cycles, SIAM J. Sci. Comput., 24 (2003), pp. 1839-1863, https://doi.org/10.1137/S106482750238911X. · Zbl 1042.37063
[134] G. Froyland, C. González-Tokman, and A. Quas, Detecting isolated spectrum of transfer and Koopman operators with Fourier analytic tools, J. Comput. Dynam., 1 (2014), pp. 249-278, https://doi.org/10.3934/jcd.2014.1.249. · Zbl 1346.37066
[135] G. Froyland, G. A. Gottwald, and A. Hammerlindl, A trajectory-free framework for analysing multiscale systems, Phys. D, 328-329 (2016), pp. 34-43, https://doi.org/10.1016/j.physd.2016.04.010. · Zbl 1366.65065
[136] G. Froyland, O. Junge, and P. Koltai, Estimating long-term behavior of flows without trajectory integration: The infinitesimal generator approach, SIAM J. Numer. Anal., 51 (2013), pp. 223-247, https://doi.org/10.1137/110819986. · Zbl 1267.37101
[137] G. Froyland and O. Stancevic, Escape rates and Perron-Frobenius operators: Open and closed dynamical systems, Discrete Contin. Dyn. Syst. B, 14 (2010), pp. 457-472, https://doi.org/10.3934/dcdsb.2010.14.457. · Zbl 1213.37012
[138] K. Fujii and Y. Kawahara, Dynamic mode decomposition in vector-valued reproducing kernel Hilbert spaces for extracting dynamical structure among observables, Neural Networks, 117 (2019), pp. 94-103. · Zbl 1441.37092
[139] C. E. Garcia, D. M. Prett, and M. Morari, Model predictive control: Theory and practice-a survey, Automatica, 25 (1989), pp. 335-348. · Zbl 0685.93029
[140] J. L. Garriga and M. Soroush, Model predictive control tuning methods: A review, Industrial Engrg. Chem. Res., 49 (2010), pp. 3505-3515.
[141] P. Gaspard, Chaos, Scattering and Statistical Mechanics, Cambridge Nonlinear Sci. Ser. 9, Cambridge University Press, Cambridge, UK, 1998. · Zbl 0915.00011
[142] P. Gaspard, G. Nicolis, A. Provata, and S. Tasaki, Spectral signature of the pitchfork bifurcation: Liouville equation approach, Phys. Rev. E, 51 (1995), pp. 74-94, https://doi.org/10.1103/PhysRevE.51.74.
[143] P. Gelß, S. Klus, J. Eisert, and C. Schütte, Multidimensional approximation of nonlinear dynamical systems, J. Comput. Nonlinear Dynam., 14 (2019), art. 061006.
[144] D. Giannakis, Data-driven spectral decomposition and forecasting of ergodic dynamical systems, Appl. Comput. Harmon. Anal., 47 (2019), pp. 338-396, https://doi.org/10.1016/j.acha.2017.09.001. · Zbl 1420.37113
[145] D. Giannakis, Delay-coordinate maps, coherence, and approximate spectra of evolution operators, Res. Math. Sci., 8 (2021), art. 8. · Zbl 1460.37077
[146] D. Giannakis and S. Das, Extraction and prediction of coherent patterns in incompressible flows through space\textendashtime Koopman analysis, Phys. D, 402 (2020), art. 132211, https://doi.org/10.1016/j.physd.2019.132211. · Zbl 1453.76179
[147] C. Gin, B. Lusch, S. L. Brunton, and J. N. Kutz, Deep learning models for global coordinate transformations that linearise PDEs, European J. Appl. Math., 32 (2021), pp. 515-539. · Zbl 1479.35021
[148] C. R. Gin, D. E. Shea, S. L. Brunton, and J. N. Kutz, DeepGreen: Deep learning of Green’s functions for nonlinear boundary value problems, Sci. Rep., 11 (2021), art. 21614.
[149] D. Goswami and D. A. Paley, Global bilinearization and controllability of control-affine nonlinear systems: A Koopman spectral approach, in IEEE 56th Annual Conference on Decision and Control (CDC), IEEE, 2017, pp. 6107-6112.
[150] N. Govindarajan, R. Mohr, S. Chandrasekaran, and I. Mezic, On the approximation of Koopman spectra for measure preserving transformations, SIAM J. Appl. Dyn. Syst., 18 (2019), pp. 1454-1497, https://doi.org/10.1137/18M1175094. · Zbl 1436.28011
[151] A. Goza and T. Colonius, Modal decomposition of fluid-structure interaction with application to flag flapping, J. Fluids Structures, 81 (2018), pp. 728-737.
[152] M. Grilli, P. J. Schmid, S. Hickel, and N. A. Adams, Analysis of unsteady behaviour in shockwave turbulent boundary layer interaction, J. Fluid Mech., 700 (2012), pp. 16-28. · Zbl 1248.76079
[153] J. Grosek and J. N. Kutz, Dynamic Mode Decomposition for Real-Time Background/Foreground Separation in Video, preprint, https://arxiv.org/abs/1404.7592, 2014.
[154] J. Guckenheimer and P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, New York, 1983. · Zbl 0515.34001
[155] F. Gueniat, L. Mathelin, and L. Pastur, A dynamic mode decomposition approach for large and arbitrarily sampled systems, Phys. Fluids, 27 (2015), art. 025113.
[156] N. Halko, P.-G. Martinsson, and J. A. Tropp, Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions, SIAM Rev., 53 (2011), pp. 217-288, https://doi.org/10.1137/090771806. · Zbl 1269.65043
[157] G. Haller, Lagrangian coherent structures from approximate velocity data, Phys. Fluids, 14 (2002), pp. 1851-1861. · Zbl 1185.76161
[158] G. Haller, Lagrangian coherent structures, Annu. Rev. Fluid Mech., 47 (2015), pp. 137-162.
[159] P. R. Halmos, Approximation theories for measure preserving transformations, Trans. Amer. Math. Soc., 55 (1944), pp. 1-18, https://doi.org/10.2307/1990137. · Zbl 0063.01890
[160] Y. Han, W. Hao, and U. Vaidya, Deep learning of Koopman representation for control, in 59th IEEE Conference on Decision and Control, 2020, pp. 1890-1895.
[161] S. Hanke, S. Peitz, O. Wallscheid, S. Klus, J. Böcker, and M. Dellnitz, Koopman Operator-Based Finite-Set Model Predictive Control for Electrical Drives, preprint, https://arxiv.org/abs/1804.00854, 2018.
[162] M. Haseli and J. Cortes, Efficient identification of linear evolutions in nonlinear vector fields: Koopman invariant subspaces, in 58th IEEE Conference on Decision and Control (CDS), IEEE, 2019, pp. 1746-1751, https://doi.org/10.1109/cdc40024.2019.9029955.
[163] A. Hasnain, N. Boddupalli, S. Balakrishnan, and E. Yeung, Steady state programming of controlled nonlinear systems via deep dynamic mode decomposition, in 2020 American Control Conference (ACC), 2020, pp. 4245-4251.
[164] A. Hasnain, N. Boddupalli, and E. Yeung, Optimal reporter placement in sparsely measured genetic networks using the Koopman operator, in 58th IEEE Conference on Decision and Control (CDC), IEEE, 2019, pp. 19-24.
[165] M. Hemati and H. Yao, Dynamic mode shaping for fluid flow control: New strategies for transient growth suppression, in 8th AIAA Theoretical Fluid Mechanics Conference, AIAA, 2017, art. 3160.
[166] M. S. Hemati, C. W. Rowley, E. A. Deem, and L. N. Cattafesta, De-biasing the dynamic mode decomposition for applied Koopman spectral analysis, Theoret. Comput. Fluid Dynam., 31 (2017), pp. 349-368.
[167] M. S. Hemati, M. O. Williams, and C. W. Rowley, Dynamic mode decomposition for large and streaming datasets, Phys. Fluids, 26 (2014), art. 111701.
[168] R. Hermann and A. J. Krener, Nonlinear controllability and observability, IEEE Trans. Automat. Control, 22 (1977), pp. 728-740. · Zbl 0396.93015
[169] B. Herrmann, P. J. Baddoo, R. Semaan, S. L. Brunton, and B. J. McKeon, Data-driven resolvent analysis, J. Fluid Mech., 918 (2021), art. A10. · Zbl 1487.76065
[170] T. Hey, S. Tansley, and K. M. Tolle, The Fourth Paradigm: Data-Intensive Scientific Discovery, Vol. 1, Microsoft Research, Redmond, WA, 2009.
[171] S. M. Hirsh, K. D. Harris, J. N. Kutz, and B. W. Brunton, Centering data improves the dynamic mode decomposition, SIAM J. Appl. Dyn. Syst., 19 (2020), pp. 1920-1955, https://doi.org/10.1137/19M1289881. · Zbl 1465.37092
[172] B. L. Ho and R. E. Kalman, Effective construction of linear state-variable models from input/output data, in Proceedings of the 3rd Annual Allerton Conference on Circuit and System Theory, 1965, pp. 449-459.
[173] A. Hof and O. Knill, Zero-dimensional singular continuous spectrum for smooth differential equations on the torus, Ergodic Theory Dynam. Syst., 18 (1998), pp. 879-888. · Zbl 0915.58092
[174] J. Hogg, M. Fonoberova, I. Meziíc, and R. Mohr, Koopman mode analysis of agent-based models of logistics processes, PloS One, 14 (2019), art. e0222023.
[175] P. J. Holmes, J. L. Lumley, G. Berkooz, and C. W. Rowley, Turbulence, Coherent Structures, Dynamical Systems and Symmetry, 2nd ed., Cambridge Monogr. Mech., Cambridge University Press, Cambridge, UK, 2012. · Zbl 1251.76001
[176] E. Hopf, The partial differential equation \(u_t + uu_x = \mu u_{xx}\), Comm. Pure App. Math., 3 (1950), pp. 201-230. · Zbl 0039.10403
[177] B. Huang, X. Ma, and U. Vaidya, Feedback stabilization using Koopman operator, in 57th IEEE Conference on Decision and Control (CDC), IEEE, 2018, pp. 6434-6439.
[178] B. Huang, X. Ma, and U. Vaidya, Data-driven nonlinear stabilization using Koopman operator, The Koopman Operator in Systems and Control, A. Mauroy, I. Mezić, and Y. Susuki, eds., Springer, 2020, pp. 313-334. · Zbl 1453.93190
[179] C. Huang, W. E. Anderson, M. E. Harvazinski, and V. Sankaran, Analysis of self-excited combustion instabilities using decomposition techniques, in 51st AIAA Aerospace Sciences Meeting, AIAA, 2013, pp. 1-18.
[180] L. Hunt, Sufficient conditions for controllability, IEEE Trans. Circuits Syst., 29 (1982), pp. 285-288. · Zbl 0494.93008
[181] G. V. Iungo, C. Santoni-Ortiz, M. Abkar, F. Porté-Agel, M. A. Rotea, and S. Leonardi, Data-driven reduced order model for prediction of wind turbine wakes, J. Phys. Conf. Ser., 625 (2015), art. 012009.
[182] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning, Springer, 2013. · Zbl 1281.62147
[183] I. T. Jolliffe, A note on the use of principal components in regression, J. Roy. Stat. Soc. C, 31 (1982), pp. 300-303.
[184] M. R. Jovanović, From bypass transition to flow control and data-driven turbulence modeling: An input-output viewpoint, Annu. Rev. Fluid. Mech., 53 (2021), pp. 311-345. · Zbl 1459.76072
[185] M. R. Jovanović and B. Bamieh, Componentwise energy amplification in channel flows, J. Fluid Mech., 534 (2005), pp. 145-183. · Zbl 1074.76016
[186] M. R. Jovanović, P. J. Schmid, and J. W. Nichols, Sparsity-promoting dynamic mode decomposition, Phys. Fluids, 26 (2014), art. 024103.
[187] J. N. Juang, Applied System Identification, Prentice-Hall, Upper Saddle River, NJ, 1994. · Zbl 0838.93009
[188] J. N. Juang and R. S. Pappa, An eigensystem realization algorithm for modal parameter identification and model reduction, J. Guidance Control Dynam., 8 (1985), pp. 620-627. · Zbl 0589.93008
[189] J. N. Juang, M. Phan, L. G. Horta, and R. W. Longman, Identification of Observer/Kalman Filter Markov Parameters: Theory and Experiments, Technical Memorandum 104069, NASA, 1991. · Zbl 0775.93259
[190] A. G. Kachurovski\u \i, Rates of convergence in ergodic theorems, Russian Math. Surv., 51 (1996), pp. 73-124, https://doi.org/10.1070/RM1996v051n04ABEH002964. · Zbl 0880.60024
[191] E. Kaiser, J. N. Kutz, and S. L. Brunton, Discovering conservation laws from data for control, in 57th IEEE Conference on Decision and Control (CDC), IEEE, 2018, pp. 6415-6421.
[192] E. Kaiser, J. N. Kutz, and S. L. Brunton, Sparse identification of nonlinear dynamics for model predictive control in the low-data limit, Proc. Roy. Soc. London A, 474 (2018), art. 20180335. · Zbl 1425.93175
[193] E. Kaiser, J. N. Kutz, and S. L. Brunton, Data-driven approximations of dynamical systems operators for control, in The Koopman Operator in Systems and Control: Concepts, Methodologies, and Applications, A. Mauroy, I. Mezić, and Y. Susuki, eds., Lecture Notes Control Inform. Sci., Springer, Cham, 2020, pp. 197-234, https://doi.org/10.1007/978-3-030-35713-9_8. · Zbl 1453.93047
[194] E. Kaiser, J. N. Kutz, and S. L. Brunton, Data-driven discovery of Koopman eigenfunctions for control, Machine Learning Sci. Technol., 2 (2021), art. 035023.
[195] E. Kaiser, M. Morzyński, G. Daviller, J. N. Kutz, B. W. Brunton, and S. L. Brunton, Sparsity enabled cluster reduced-order models for control, J. Comput. Phys., 352 (2018), pp. 388-409. · Zbl 1375.76075
[196] R. E. Kalman, On the general theory of control systems, IFAC Proc. Vol., 1 (1960), pp. 491-502.
[197] R. E. Kalman, Mathematical description of linear dynamical systems, J. SIAM Control Ser. A, 1 (1963), pp. 152-192, https://doi.org/10.1137/0301010. · Zbl 0145.34301
[198] M. Kamb, E. Kaiser, S. L. Brunton, and J. N. Kutz, Time-delay observables for Koopman: Theory and applications, SIAM J. Appl. Dyn. Syst., 19 (2020), pp. 886-917, https://doi.org/10.1137/18M1216572. · Zbl 1441.37090
[199] A. A. Kaptanoglu, K. D. Morgan, C. J. Hansen, and S. L. Brunton, Characterizing magnetized plasmas with dynamic mode decomposition, Phys. Plasmas, 27 (2020), art. 032108.
[200] T. Katayama, Subspace Methods for System Identification, Springer-Verlag, London, 2005. · Zbl 1118.93002
[201] A. B. Katok and A. M. Stepin, Approximations in ergodic theory, Russian Math. Surveys, 22 (1967), p. 77, https://doi.org/10.1070/RM1967v022n05ABEH001227. · Zbl 0172.07202
[202] Y. Kawahara, Dynamic mode decomposition with reproducing kernels for Koopman spectral analysis, in Advances in Neural Information Processing Systems, 2016, pp. 911-919.
[203] H. K. Khalil, Nonlinear Systems, Prentice-Hall, 1996.
[204] P. E. Kloeden and M. Rasmussen, Nonautonomous Dynamical Systems, Math. Surveys Mongr. 176, AMS, Providence, RI, 2011. · Zbl 1244.37001
[205] S. Klus, P. Gelß, S. Peitz, and C. Schütte, Tensor-based dynamic mode decomposition, Nonlinearity, 31 (2018), pp. 3359-3380. · Zbl 1404.65313
[206] S. Klus, P. Koltai, and C. Schütte, On the numerical approximation of the Perron-Frobenius and Koopman operator, J. Comput. Dynam., 3 (2016), pp. 51-79. · Zbl 1353.37154
[207] S. Klus, F. Nüske, and B. Hamzi, Kernel-based approximation of the Koopman generator and Schrödinger operator, Entropy, 22 (2020), art. 722.
[208] S. Klus, F. Nüske, P. Koltai, H. Wu, I. Kevrekidis, C. Schütte, and F. Noé, Data-driven model reduction and transfer operator approximation, J. Nonlinear Sci., 28 (2018), pp. 985-1010. · Zbl 1396.37083
[209] S. Klus, F. Nüske, S. Peitz, J. H. Niemann, C. Clementi, and C. Schütte, Data-driven approximation of the Koopman generator: Model reduction, system identification, and control, Phys. D, 406 (2020), pp. 1-32, https://doi.org/10.1016/j.physd.2020.132416. · Zbl 1485.93097
[210] S. Klus, I. Schuster, and K. Muandet, Eigendecompositions of transfer operators in reproducing kernel Hilbert spaces, J. Nonlinear Sci., 30 (2020), pp. 283-315. · Zbl 1437.37104
[211] O. Knill, Singular continuous spectrum and quantitative rates of weak mixing, Discrete Contin. Dyn. Syst., 4 (1998), pp. 33-42, https://doi.org/10.3934/dcds.1998.4.33. · Zbl 0949.28011
[212] D. Kochkov, J. A. Smith, A. Alieva, Q. Wang, M. P. Brenner, and S. Hoyer, Machine learning accelerated computational fluid dynamics, Proc. Natl. Acad. Sci. USA, 118 (2021), art. e2101784118, https://doi.org/10.1073/pnas.2101784118.
[213] P. Koltai, H. C. Lie, and M. Plonka, Fréchet differentiable drift dependence of Perron\textendashFrobenius and Koopman operators for non-deterministic dynamics, Nonlinearity, 32 (2019), pp. 4232-4257, https://doi.org/10.1088/1361-6544/ab1f2a. · Zbl 1475.60104
[214] B. O. Koopman, Hamiltonian systems and transformation in Hilbert space, Proc. Natl. Acad. Sci. USA, 17 (1931), pp. 315-318. · JFM 57.1010.02
[215] B. O. Koopman and J. von Neumann, Dynamical systems of continuous spectra, Proc. Natl. Acad. Sci. USA, 18 (1932), pp. 255-263. · Zbl 0006.22702
[216] M. Korda and I. Mezić, Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control, Automatica, 93 (2018), pp. 149-160. · Zbl 1400.93079
[217] M. Korda and I. Mezić, On convergence of extended dynamic mode decomposition to the Koopman operator, J. Nonlinear Sci., 28 (2018), pp. 687-710. · Zbl 1457.37103
[218] M. Korda and I. Mezić, Optimal construction of Koopman eigenfunctions for prediction and control, IEEE Trans. Automat. Control, 65 (2020), pp. 5114-5129. · Zbl 1536.93309
[219] M. Korda, M. Putinar, and I. Mezić, Data-driven spectral analysis of the Koopman operator, Appl. Comput. Harmon. Anal., 48 (2020), pp. 599-629, https://doi.org/10.1016/j.acha.2018.08.002. · Zbl 1436.37093
[220] M. Korda, Y. Susuki, and I. Mezić, Power grid transient stabilization using Koopman model predictive control, IFAC-PapersOnLine, 51 (2018), pp. 297-302.
[221] K. Kowalski, W.-H. Steeb, and K. Kowalksi, Nonlinear Dynamical Systems and Carleman Linearization, World Scientific, 1991. · Zbl 0753.34003
[222] B. Kramer, P. Grover, P. Boufounos, S. Nabi, and M. Benosman, Sparse sensing and DMD-based identification of flow regimes and bifurcations in complex flows, SIAM J. Appl. Dyn. Syst., 16 (2017), pp. 1164-1196, https://doi.org/10.1137/15M104565X. · Zbl 1373.37185
[223] A. Krener, Linearization and bilinearization of control systems, in Proc. 12th Allerton Conf. on Circuit and System Theory, Monticello, Springer, Berlin, 1974, pp. 834-843.
[224] J. N. Kutz, Deep learning in fluid dynamics, J. Fluid Mech., 814 (2017), pp. 1-4. · Zbl 1383.76380
[225] J. N. Kutz, S. L. Brunton, B. W. Brunton, and J. L. Proctor, Dynamic Mode Decomposition: Data-Driven Modeling of Complex Systems, SIAM, Philadelphia, 2016, https://doi.org/10.1137/1.9781611974508. · Zbl 1365.65009
[226] J. N. Kutz, X. Fu, and S. L. Brunton, Multiresolution dynamic mode decomposition, SIAM J. Appl. Dyn. Syst., 15 (2016), pp. 713-735, https://doi.org/10.1137/15M1023543. · Zbl 1338.37121
[227] J. N. Kutz, J. L. Proctor, and S. L. Brunton, Applied Koopman theory for partial differential equations and data-driven modeling of spatio-temporal systems, Complexity, 2018 (2018), art. e6010634, https://doi.org/10.1155/2018/6010634. · Zbl 1409.37029
[228] M. D. Kvalheim, D. Hong, and S. Revzen, Generic properties of Koopman eigenfunctions for stable fixed points and periodic orbits, IFAC-PapersOnLine, 54 (2021), pp. 267-272, https://doi.org/10.1016/j.ifacol.2021.06.150. · Zbl 1491.37029
[229] M. D. Kvalheim and S. Revzen, Existence and uniqueness of global Koopman eigenfunctions for stable fixed points and periodic orbits, Phys. D, 425 (2021), art. 132959, https://doi.org/10.1016/j.physd.2021.132959. · Zbl 1491.37029
[230] I. Kwee and J. Schmidhuber, Optimal control using the transport equation: The Liouville machine, Adaptive Behav., 9 (2001), pp. 105-118.
[231] Y. Lan and I. Mezić, Linearization in the large of nonlinear systems and Koopman operator spectrum, Phys. D, 242 (2013), pp. 42-53. · Zbl 1260.34073
[232] H. Lange, S. L. Brunton, and J. N. Kutz, From Fourier to Koopman: Spectral methods for long-term time series prediction, J. Mach. Learn. Res., 22 (2021), pp. 1-38. · Zbl 1539.37085
[233] A. Lasota and M. C. Mackey, Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics, 2nd ed., Appl. Math. Sci. 97, Springer-Verlag, New York, 1994. · Zbl 0784.58005
[234] K. Law, A. Stuart, and K. Zygalakis, Data Assimilation, Springer, Cham, 2015. · Zbl 1353.60002
[235] P. D. Lax, Functional Analysis, Wiley and Sons, 2002. · Zbl 1009.47001
[236] P. D. Lax, Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math., 21 (1968), pp. 467-490. · Zbl 0162.41103
[237] P. D. Lax, Approximation of measure preserving transformations, Comm. Pure Appl. Math., 24 (1971), pp. 133-135, https://doi.org/10.1002/cpa.3160240204. · Zbl 0205.35702
[238] J. H. Lee, Model predictive control: Review of the three decades of development, Int. J. Control Autom. Syst., 9 (2011), art. 415.
[239] K. Lee and K. T. Carlberg, Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders, J. Comput. Phys., 404 (2020), art. 108973. · Zbl 1454.65184
[240] Z. Levnajić and I. Mezić, Ergodic theory and visualization. I. Mesochronic plots for visualization of ergodic partition and invariant sets, Chaos, 20 (2010), art. 033114, https://doi.org/10.1063/1.3458896. · Zbl 1311.37069
[241] Z. Levnajić and I. Mezić, Ergodic theory and visualization. II. Fourier mesochronic plots visualize (quasi)periodic sets, Chaos, 25 (2015), art. 053105, https://doi.org/10.1063/1.4919767. · Zbl 1374.37112
[242] Q. Li, F. Dietrich, E. M. Bollt, and I. G. Kevrekidis, Extended dynamic mode decomposition with dictionary learning: A data-driven adaptive spectral decomposition of the Koopman operator, Chaos, 27 (2017), art. 103111. · Zbl 06876982
[243] T.-Y. Li, Finite approximation for the Frobenius-Perron operator. A solution to Ulam’s conjecture, J. Approx. Theory, 17 (1976), pp. 177-186. · Zbl 0357.41011
[244] Y. Li, H. He, J. Wu, D. Katabi, and A. Torralba, Learning compositional Koopman operators for model-based control, in 8th International Conference on Learning Representations (ICLR 2020).
[245] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anandkumar, Fourier neural operator for parametric partial differential equations, in International Conference on Learning Representations (ICLR 2021), 2021, https://openreview.net/forum?id=c8P9NQVtmnO.
[246] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anandkumar, Multipole graph neural operator for parametric partial differential equations, in Advances in Neural Information Processing Systems, H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, eds., Curran Associates, 2020, pp. 6755-6766.
[247] Z. Li, N. Kovachki, K. Azizzadenesheli, B. Liu, K. Bhattacharya, A. Stuart, and A. Anandkumar, Neural Operator: Graph Kernel Network for Partial Differential Equations, preprint, https://arxiv.org/abs/2003.03485, 2020.
[248] E. Ling, L. Ratliff, and S. Coogan, Koopman operator approach for instability detection and mitigation in signalized traffic, in 21st International Conference on Intelligent Transportation Systems (ITSC), IEEE, 2018, pp. 1297-1302.
[249] J. Ling, A. Kurzawski, and J. Templeton, Reynolds averaged turbulence modelling using deep neural networks with embedded invariance, J. Fluid Mech., 807 (2016), pp. 155-166. · Zbl 1383.76175
[250] Z. Liu, S. Kundu, L. Chen, and E. Yeung, Decomposition of nonlinear dynamical systems using Koopman Gramians, in 2018 Annual American Control Conference (ACC), IEEE, 2018, pp. 4811-4818.
[251] L. Ljung, System Identification: Theory for the User, 2nd ed., Pearson, 1999. · Zbl 0615.93004
[252] K. Loparo and G. Blankenship, Estimating the domain of attraction of nonlinear feedback systems, IEEE Trans. Automat. Control, 23 (1978), pp. 602-608. · Zbl 0385.93023
[253] E. N. Lorenz, Empirical Orthogonal Functions and Statistical Weather Prediction, Technical report, Massachusetts Institute of Technology, 1956.
[254] L. Lu, P. Jin, G. Pang, Z. Zhang, and G. E. Karniadakis, Learning nonlinear operators via DeepONet based on the universal approximation theorem of operators, Nature Machine Intell., 3 (2021), pp. 218-229.
[255] B. Lusch, J. N. Kutz, and S. L. Brunton, Deep learning for universal linear embeddings of nonlinear dynamics, Nature Commun., 9 (2018), art. 4950.
[256] F. Lusseyran, F. Gueniat, J. Basley, C. L. Douay, L. R. Pastur, T. M. Faure, and P. J. Schmid, Flow coherent structures and frequency signature: Application of the dynamic modes decomposition to open cavity flow, J. Phys. Conf. Ser., 318 (2011), art. 042036.
[257] S. Luzzatto, I. Melbourne, and F. Paccaut, The Lorenz attractor is mixing, Comm. Math. Phys., 260 (2005), pp. 393-401, https://doi.org/10.1007/s00220-005-1411-9. · Zbl 1082.37030
[258] Z. Ma, S. Ahuja, and C. W. Rowley, Reduced order models for control of fluids using the eigensystem realization algorithm, Theoret. Comput. Fluid Dyn., 25 (2011), pp. 233-247. · Zbl 1272.76103
[259] S. Maćešić and N. Črnjarić-Žic, Koopman operator theory for nonautonomous and stochastic systems, in The Koopman Operator in Systems and Control: Concepts, Methodologies, and Applications, A. Mauroy, I. Mezić, and Y. Susuki, eds., Lect. Notes Control Inform. Sci., Springer, Cham, 2020, pp. 131-160, https://doi.org/10.1007/978-3-030-35713-9_6. · Zbl 1453.93050
[260] S. Maćešić, N. Črnjarić-Žic, and I. Mezić, Koopman operator family spectrum for nonautonomous systems, SIAM J. Appl. Dyn. Syst., 17 (2018), pp. 2478-2515, https://doi.org/10.1137/17M1133610. · Zbl 1403.37092
[261] R. de la Madrid, The role of the rigged Hilbert space in quantum mechanics, European J. Phys., 26 (2005), pp. 287-312, https://doi.org/10.1088/0143-0807/26/2/008. · Zbl 1079.81022
[262] R. de la Madrid, A. Bohm, and M. Gadella, Rigged Hilbert space treatment of continuous spectrum, Fortschritte Phys., 50 (2002), pp. 185-216, https://doi.org/10.1002/1521-3978(200203)50:2 · Zbl 1033.81036
[263] A. J. Majda and J. Harlim, Physics constrained nonlinear regression models for time series, Nonlinearity, 26 (2012), pp. 201-217. · Zbl 1262.93024
[264] A. J. Majda and Y. Lee, Conceptual dynamical models for turbulence, Proc. Natl. Acad. Sci. USA, 111 (2014), pp. 6548-6553. · Zbl 1355.76025
[265] G. Mamakoukas, I. Abraham, and T. Murphey, Learning Data-Driven Stable Koopman Operators, preprint, https://arxiv.org/abs/2005.04291, 2020.
[266] G. Mamakoukas, M Castan͂o, X. Tan, and T. Murphey, Local Koopman operators for data-driven control of robotic systems, in Proceedings of Robotics: Science and Systems XV, IEEE, 2019.
[267] G. Mamakoukas, M. L. Castan͂o, X. Tan, and T. D. Murphey, Derivative-based Koopman operators for real-time control of robotic systems, IEEE Trans. Robotics, 37 (2021), pp. 2173-2192.
[268] J. Mann and J. N. Kutz, Dynamic mode decomposition for financial trading strategies, Quant. Finance, 16 (2016), pp. 1643-1655. · Zbl 1400.91558
[269] K. Manohar, B. W. Brunton, J. N. Kutz, and S. L. Brunton, Data-driven sparse sensor placement, IEEE Control Syst. Mag., 38 (2018), pp. 63-86. · Zbl 1477.93128
[270] K. Manohar, E. Kaiser, S. L. Brunton, and J. N. Kutz, Optimized sampling for multiscale dynamics, Multiscale Model. Simul., 17 (2019), pp. 117-136, https://doi.org/10.1137/17M1162366. · Zbl 07033871
[271] K. Manohar, J. N. Kutz, and S. L. Brunton, Optimal Sensor and Actuator Placement Using Balanced Model Reduction, preprint, https://arxiv.org/abs/1812.01574, 2018.
[272] I. Manojlović, M. Fonoberova, R. Mohr, A. Andrejčuk, Z. Drmač, Y. Kevrekidis, and I. Mezić, Applications of Koopman Mode Analysis to Neural Networks, preprint, https://arxiv.org/abs/2006.11765, 2020.
[273] A. Mardt, L. Pasquali, F. Noé, and H. Wu, Deep learning Markov and Koopman models with physical constraints, in Mathematical and Scientific Machine Learning, PMLR, 2020, pp. 451-475.
[274] A. Mardt, L. Pasquali, H. Wu, and F. Noé, VAMPnets: Deep learning of molecular kinetics, Nature Commun., 9 (2018), art. 5.
[275] L. Markus and H. Yamabe, Global stability criteria for differential systems, Osaka Math. J., 12 (1960), pp. 305-317. · Zbl 0096.28802
[276] N. Marrouch, J. Slawinska, D. Giannakis, and H. L. Read, Data-driven Koopman operator approach for computational neuroscience, Ann. Math. Artif. Intell., 88 (2020), pp. 1155-1173. · Zbl 1466.37073
[277] L. Massa, R. Kumar, and P. Ravindran, Dynamic mode decomposition analysis of detonation waves, Phys. Fluids, 24 (2012), art. 066101.
[278] R. Maulik, O. San, A. Rasheed, and P. Vedula, Subgrid modelling for two-dimensional turbulence using neural networks, J. Fluid Mech., 858 (2019), pp. 122-144. · Zbl 1415.76405
[279] A. Mauroy and J. Goncalves, Koopman-based lifting techniques for nonlinear systems identification, IEEE Trans. Automat. Control, 65 (2020), pp. 2550-2565. · Zbl 1533.93112
[280] A. Mauroy and I. Mezić, On the use of Fourier averages to compute the global isochrons of (quasi)periodic dynamics, Chaos, 22 (2012), art. 033112, https://doi.org/10.1063/1.4736859. · Zbl 1319.70024
[281] A. Mauroy and I. Mezić, A spectral operator-theoretic framework for global stability, in 52nd IEEE Annual Conference on Decision and Control (CDC), IEEE, 2013, pp. 5234-5239.
[282] A. Mauroy and I. Mezić, Global stability analysis using the eigenfunctions of the Koopman operator, IEEE Trans. Automat. Control, 61 (2016), pp. 3356-3369. · Zbl 1359.93372
[283] A. Mauroy, I. Mezić, and J. Moehlis, Isostables, isochrons, and Koopman spectrum for the action-angle representation of stable fixed point dynamics, Phys. D, 261 (2013), pp. 19-30, https://doi.org/10.1016/j.physd.2013.06.004. · Zbl 1284.37047
[284] A. Mauroy, I. Mezić, and Y. Susuki, eds., The Koopman Operator in Systems and Control: Concepts, Methodologies, and Applications, Springer, 2020. · Zbl 1448.93003
[285] D. Q. Mayne, Nonlinear model predictive control: An assessment, in Proc. Chemical Process Control, V. J. C. Kantor, C. E. Garcia, and B. Carnahan, eds., AIChE, 1997, pp. 217-231.
[286] B. J. McKeon and A. S. Sharma, A critical-layer framework for turbulent pipe flow, J. Fluid Mech., 658 (2010), pp. 336-382. · Zbl 1205.76138
[287] P. M. Mehta and R. Linares, A new transformative framework for data assimilation and calibration of physical ionosphere-thermosphere models, Space Weather, 16 (2018), pp. 1086-1100, https://doi.org/10.1029/2018SW001875.
[288] J. D. Meiss, Differential Dynamical Systems, SIAM, Philadelphia, 2007, https://doi.org/10.1137/1.9780898718232. · Zbl 1144.34001
[289] A. Mesbahi, J. Bu, and M. Mesbahi, On modal properties of the Koopman operator for nonlinear systems with symmetry, in 2019 Annual American Control Conference (ACC), IEEE, 2019, pp. 1918-1923, https://doi.org/10.23919/ACC.2019.8815342.
[290] I. Mezić, Spectral properties of dynamical systems, model reduction and decompositions, Nonlinear Dynam., 41 (2005), pp. 309-325. · Zbl 1098.37023
[291] I. Mezić, Analysis of fluid flows via spectral properties of the Koopman operator, Annu. Rev. Fluid Mech., 45 (2013), pp. 357-378. · Zbl 1359.76271
[292] I. Mezić, Spectrum of the Koopman operator, spectral expansions in functional spaces, and state-space geometry, J. Nonlinear Sci., 30 (2020), pp. 2091-2145, https://doi.org/10.1007/s00332-019-09598-5. · Zbl 1467.37085
[293] I. Mezić, On Numerical Approximations of the Koopman Operator, preprint, https://arxiv.org/abs/2009.05883, 2020. · Zbl 1467.37085
[294] I. Mezić and A. Banaszuk, Comparison of systems with complex behavior, Phys. D, 197 (2004), pp. 101-133. · Zbl 1059.37072
[295] I. Mezić and T. Runolfsson, Uncertainty analysis of complex dynamical systems, in 2004 Annual American Control Conference (ACC), IEEE, 2004, pp. 2659-2664.
[296] I. Mezić and T. Runolfsson, Uncertainty propagation in dynamical systems, Automatica, 44 (2008), pp. 3003-3013, https://doi.org/10.1016/j.automatica.2008.04.020. · Zbl 1153.93446
[297] I. Mezić and S. Wiggins, A method for visualization of invariant sets of dynamical systems based on the ergodic partition, Chaos, 9 (1999), pp. 213-218. · Zbl 0987.37080
[298] Y. Mizuno, D. Duke, C. Atkinson, and J. Soria, Investigation of wall-bounded turbulent flow using dynamic mode decomposition, J. Phys. Conf. Ser., 318 (2011), art. 042040.
[299] J. P. Moeck, J.-F. Bourgouin, D. Durox, T. Schuller, and S. Candel, Tomographic reconstruction of heat release rate perturbations induced by helical modes in turbulent swirl flames, Exp. Fluids, 54 (2013), pp. 1-17.
[300] R. Mohr and I. Mezić, Construction of Eigenfunctions for Scalar-Type Operators via Laplace Averages with Connections to the Koopman Operator, preprint, https://arxiv.org/abs/1403.6559, 2014.
[301] R. Mohr and I. Mezić, Koopman Principle Eigenfunctions and Linearization of Diffeomorphisms, preprint, https://arxiv.org/abs/1611.01209, 2016.
[302] C. C. Moore, Ergodic theorem, ergodic theory, and statistical mechanics, Proc. Natl. Acad. Sci. USA, 112 (2015), pp. 1907-1911. · Zbl 1355.37001
[303] J. Moore and B. Anderson, Optimal linear control systems with input derivative constraints, Proc. Inst. Electrical Engineers, 114 (1967), pp. 1987-1990.
[304] M. Morari and J. H. Lee, Model predictive control: Past, present and future, Comput. Chem. Engrg., 23 (1999), pp. 667-682.
[305] J. Morton, F. D. Witherden, A. Jameson, and M. J. Kochenderfer, Deep dynamical modeling and control of unsteady fluid flows, in Advances in Neural Information Processing Systems 31 (NeurIPS 2018), 2019.
[306] D. Mozyrska and Z. Bartosiewicz, Dualities for linear control differential systems with infinite matrices, Control Cybernet., 35 (2006), pp. 887-904. · Zbl 1132.93309
[307] D. Mozyrska and Z. Bartosiewicz, Carleman linearization of linearly observable polynomial systems, in Mathematical Control Theory and Finance, A. Sarychev, A. Shiryaev, M. Guerra, and M. do Rosário Grossinho, eds., Springer, Berlin, 2008, pp. 311-323. · Zbl 1211.93027
[308] A. Mukherjee, R. Rai, P. Singla, T. Singh, and A. Patra, Laplacian graph based approach for uncertainty quantification of large scale dynamical systems, in 2015 Annual American Control Conference (ACC), IEEE, 2015, pp. 3998-4003, https://doi.org/10.1109/ACC.2015.7171954.
[309] T. W. Muld, G. Efraimsson, and D. S. Henningson, Flow structures around a high-speed train extracted using proper orthogonal decomposition and dynamic mode decomposition, Comput. & Fluids, 57 (2012), pp. 87-97. · Zbl 1365.76165
[310] T. W. Muld, G. Efraimsson, and D. S. Henningson, Mode decomposition on surface-mounted cube, Flow Turbulence Combustion, 88 (2012), pp. 279-310. · Zbl 1432.76122
[311] M. G. Nadkarni, On spectra of nonsingular transformations and flows, Sankhyā Ser. A, 41 (1979), pp. 59-66. · Zbl 0482.28029
[312] B. Nadler, S. Lafon, R. R. Coifman, and I. G. Kevrekidis, Diffusion maps, spectral clustering and reaction coordinates of dynamical systems, Appl. Comput. Harmon. Anal., 21 (2006), pp. 113-127. · Zbl 1103.60069
[313] H. Nakao and I. Mezić, Spectral analysis of the Koopman operator for partial differential equations, Chaos, 30 (2020), art. 113131, https://doi.org/10.1063/5.0011470. · Zbl 1454.35225
[314] S. P. Nandanoori, S. Sinha, and E. Yeung, Data-driven operator theoretic methods for global phase space learning, in 2020 Annual American Control Conference (ACC), IEEE, 2020, pp. 4551-4557, https://doi.org/10.23919/ACC45564.2020.9147220.
[315] A. Narasingam and J. Kwon, Koopman Lyapunov-based model predictive control of nonlinear chemical process systems, AIChE J., 65 (2019), https://doi.org/10.1002/aic.16743.
[316] M. Netto and L. Mili, A robust data-driven Koopman Kalman filter for power systems dynamic state estimation, IEEE Trans. Power Systems, 33 (2018), pp. 7228-7237.
[317] J. von Neumann, Proof of the quasi-ergodic hypothesis, Proc. Natl. Acad. Sci. USA, 18 (1932), pp. 70-82. · Zbl 0004.31004
[318] J. von Neumann, Zur Operatorenmethode in der klassischen Mechanik, Ann of Math. (2), 33 (1932), pp. 587-642, https://doi.org/10.2307/1968537. · Zbl 0005.12203
[319] B. R. Noack, W. Stankiewicz, M. Morzynski, and P. J. Schmid, Recursive dynamic mode decomposition of a transient cylinder wake, J. Fluid Mech., 809 (2016), pp. 843-872. · Zbl 1383.76122
[320] F. Noé and F. Nüske, A variational approach to modeling slow processes in stochastic dynamical systems, Multiscale Model. Simul., 11 (2013), pp. 635-655, https://doi.org/10.1137/110858616. · Zbl 1306.65013
[321] F. Noé, S. Olsson, J. Köhler, and H. Wu, Boltzmann generators: Sampling equilibrium states of many-body systems with deep learning, Science, 365 (2019), art. eaaw1147.
[322] E. Noether, Invariante Variationsprobleme, Nachr. König. Ges. Wiss. Göttingen Math.-Phys. Klasse, 1918 (1918), pp. 235-257, (in English). · JFM 46.0770.01
[323] T. Nonomura, H. Shibata, and R. Takaki, Dynamic mode decomposition using a Kalman filter for parameter estimation, AIP Adv., 8 (2018), art. 105106.
[324] T. Nonomura, H. Shibata, and R. Takaki, Extended-Kalman-filter-based dynamic mode decomposition for simultaneous system identification and denoising, PloS One, 14 (2019), art. e0209836.
[325] F. Nüske, P. Gelß, S. Klus, and C. Clementi, Tensor-based computation of metastable and coherent sets, Phys. D, 427 (2021), art. 133018. · Zbl 1486.65045
[326] F. Nüske, B. G. Keller, G. Pérez-Hernández, A. S. Mey, and F. Noé, Variational approach to molecular kinetics, J. Chem. Theory Comput., 10 (2014), pp. 1739-1752.
[327] F. Nüske, R. Schneider, F. Vitalini, and F. Noé, Variational tensor approach for approximating the rare-event kinetics of macromolecular systems, J. Chem. Phys., 144 (2016), art. 054105.
[328] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, 3rd ed., Pearson Education Limited, Harlow, 2014. · Zbl 0676.42001
[329] C. M. Ostoich, D. J. Bodony, and P. H. Geubelle, Interaction of a Mach \(2.25\) turbulent boundary layer with a fluttering panel using direct numerical simulation, Phys. Fluids, 25 (2013), art. 110806.
[330] S. E. Otto and C. W. Rowley, Linearly recurrent autoencoder networks for learning dynamics, SIAM J. Appl. Dyn. Syst., 18 (2019), pp. 558-593, https://doi.org/10.1137/18M1177846. · Zbl 1489.65164
[331] S. E. Otto and C. W. Rowley, Koopman operators for estimation and control of dynamical systems, Annu. Rev. Control Robotics Autonom. Syst., 4 (2021), pp. 59-87.
[332] J. Page and R. R. Kerswell, Koopman analysis of Burgers equation, Phys. Rev. Fluids, 3 (2018), art. 071901, https://doi.org/10.1103/PhysRevFluids.3.071901.
[333] J. Page and R. R. Kerswell, Koopman mode expansions between simple invariant solutions, J. Fluid Mech., 879 (2019), pp. 1-27, https://doi.org/10.1017/jfm.2019.686. · Zbl 1430.76222
[334] C. Pan, D. Yu, and J. Wang, Dynamical mode decomposition of Gurney flap wake flow, Theoret. Appl. Mech. Lett., 1 (2011), art. 012002.
[335] S. Pan, N. Arnold-Medabalimi, and K. Duraisamy, Sparsity-promoting algorithms for the discovery of informative Koopman-invariant subspaces, J. Fluid Mech., 917 (2021), art. A18. · Zbl 1496.76112
[336] J. P. Parker and J. Page, Koopman analysis of isolated fronts and solitons, SIAM J. Appl. Dyn. Syst., 19 (2020), pp. 2803-2828, https://doi.org/10.1137/19M1305033. · Zbl 1465.37097
[337] B. Peherstorfer and K. Willcox, Data-driven operator inference for nonintrusive projection-based model reduction, Comput. Methods Appl. Mech. Engrg., 306 (2016), pp. 196-215. · Zbl 1436.93062
[338] S. Peitz, Controlling Nonlinear PDEs Using Low-Dimensional Bilinear Approximations Obtained from Data, preprint, https://arxiv.org/abs/1801.06419, 2018.
[339] S. Peitz and S. Klus, Koopman operator-based model reduction for switched-system control of PDEs, Automatica, 106 (2019), pp. 184-191. · Zbl 1429.93043
[340] S. Peitz and S. Klus, Feedback control of nonlinear PDEs using data-efficient reduced order models based on the Koopman operator, in The Koopman Operator in Systems and Control, Lect. Notes Control Inform. Sci. 484, A. Mauroy, I. Mezić, and Y. Susuki, eds., Springer, Cham, 2020, pp. 257-282, https://doi.org/10.1007/978-3-030-35713-9_10. · Zbl 1453.93056
[341] S. Peitz, S. E. Otto, and C. W. Rowley, Data-driven model predictive control using interpolated Koopman generators, SIAM J. Appl. Dyn. Syst., 19 (2020), pp. 2162-2193, https://doi.org/10.1137/20M1325678. · Zbl 1461.49007
[342] S. D. Pendergrass, J. N. Kutz, and S. L. Brunton, Streaming GPU Singular Value and Dynamic Mode Decompositions, preprint, https://arxiv.org/abs/1612.07875, 2016.
[343] C. Penland, Random forcing and forecasting using principal oscillation pattern analysis, Mon. Weather Rev., 117 (1989), pp. 2165-2185.
[344] C. Penland and T. Magorian, Prediction of Nin͂o 3 sea-surface temperatures using linear inverse modeling, J. Climate, 6 (1993), pp. 1067-1076.
[345] L. Perko, Differential Equations and Dynamical Systems, Springer, New York, 2009. · Zbl 0854.34001
[346] M. Phan, L. G. Horta, J. N. Juang, and R. W. Longman, Linear system identification via an asymptotically stable observer, J. Optim. Theory Appl., 79 (1993), pp. 59-86. · Zbl 0794.93022
[347] M. Phan, J. N. Juang, and R. W. Longman, Identification of linear-multivariable systems by identification of observers with assigned real eigenvalues, J. Astronaut. Sci., 40 (1992), pp. 261-279.
[348] A. S. Pikovsky, M. A. Zaks, U. Feudel, and J. Kurths, Singular continuous spectra in dissipative dynamics, Phys. Rev. E, 52 (1995), pp. 285-296, https://doi.org/10.1103/PhysRevE.52.285.
[349] M. Pollicott, On the rate of mixing of Axiom A flows, Invent. Math., 81 (1985), pp. 413-426, https://doi.org/10.1007/BF01388579. · Zbl 0591.58025
[350] J. L. Proctor, S. L. Brunton, B. W. Brunton, and J. N. Kutz, Exploiting sparsity and equation-free architectures in complex systems (invited review), European Phys. J. Special Topics, 223 (2014), pp. 2665-2684.
[351] J. L. Proctor, S. L. Brunton, and J. N. Kutz, Dynamic mode decomposition with control, SIAM J. Appl. Dyn. Syst., 15 (2016), pp. 142-161, https://doi.org/10.1137/15M1013857. · Zbl 1334.65199
[352] J. L. Proctor, S. L. Brunton, and J. N. Kutz, Generalizing Koopman theory to allow for inputs and control, SIAM J. Appl. Dyn. Syst., 17 (2018), pp. 909-930, https://doi.org/10.1137/16M1062296. · Zbl 1390.93226
[353] J. L. Proctor and P. A. Eckhoff, Discovering dynamic patterns from infectious disease data using dynamic mode decomposition, Internat. Health, 7 (2015), pp. 139-145.
[354] E. Qian, B. Kramer, B. Peherstorfer, and K. Willcox, Lift & learn: Physics-informed machine learning for large-scale nonlinear dynamical systems, Phys. D, 406 (2020), art. 132401. · Zbl 1493.62512
[355] S. J. Qin, An overview of subspace identification, Comput. Chem. Engrg., 30 (2006), pp. 1502-1513, https://doi.org/10.1016/j.compchemeng.2006.05.045.
[356] S. J. Qin and T. A. Badgwell, An overview of industrial model predictive control technology, in AIChE Symposium Series, Vol. 93, American Institute of Chemical Engineers, 1997, pp. 232-256.
[357] M. Queffélec, Substitution Dynamical Systems: Spectral Analysis, Lecture Notes in Math. 1294, Springer, Berlin, 2010. · Zbl 1225.11001
[358] C. Rackauckas, Y. Ma, J. Martensen, C. Warner, K. Zubov, R. Supekar, D. Skinner, and A. Ramadhan, Universal Differential Equations for Scientific Machine Learning, preprint, https://arxiv.org/abs/2001.04385, 2020.
[359] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. Sohl-Dickstein, On the expressive power of deep neural networks, in Proceedings of the 34th International Conference on Machine Learning, Proc. Mach. Learn. Res. 70, PMLR, 2017, pp. 2847-2854.
[360] M. Raissi, P. Perdikaris, and G. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378 (2019), pp. 686-707. · Zbl 1415.68175
[361] M. Raissi, A. Yazdani, and G. E. Karniadakis, Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations, Science, 367 (2020), pp. 1026-1030. · Zbl 1478.76057
[362] W. T. Redman, On Koopman mode decomposition and tensor component analysis, Chaos, 31 (2021), art. 051101. · Zbl 1462.37089
[363] M. Reed and B. Simon, Methods of Modern Mathematical Physics. IV. Analysis of Operators, Academic Press, New York, 1978. · Zbl 0401.47001
[364] M. Reed and B. Simon, Methods of Modern Mathematical Physics. I, 2nd ed., Academic Press, New York, 1980. · Zbl 0459.46001
[365] V. A. Rokhlin, Selected topics from the metric theory of dynamical systems, Amer. Math. Soc. Transl. Ser., 2 (1966), pp. 171-240. · Zbl 0185.21802
[366] J. A. Rosenfeld, R. Kamalapurkar, L. F. Gruss, and T. T. Johnson, Dynamic mode decomposition for continuous time systems with the Liouville operator, J. Nonlinear Sci., 32 (2021), art. 5. · Zbl 1497.37108
[367] J. A. Rosenfeld, B. P. Russo, and R. Kamalapurkar, Theoretical Foundations for the Dynamic mode decomposition of high order dynamical systems, preprint, https://arxiv.org/abs/2101.02646, 2021.
[368] C. W. Rowley, I. Mezić, S. Bagheri, P. Schlatter, and D. Henningson, Spectral analysis of nonlinear flows, J. Fluid Mech., 645 (2009), pp. 115-127. · Zbl 1183.76833
[369] S. Roy, J.-C. Hua, W. Barnhill, G. H. Gunaratne, and J. R. Gord, Deconvolution of reacting-flow dynamics using proper orthogonal and dynamic mode decompositions, Phys. Rev. E, 91 (2015), art. 013001.
[370] D. Ruelle, Resonances of chaotic dynamical systems, Phys. Rev. Lett., 56 (1986), pp. 405-407.
[371] A. Salova, J. Emenheiser, A. Rupe, J. P. Crutchfield, and R. M. D’Souza, Koopman operator and its approximations for systems with symmetries, Chaos, 29 (2019), art. 093128, https://doi.org/10.1063/1.5099091. · Zbl 1423.37029
[372] A. Sanchez-Gonzalez, J. Godwin, T. Pfaff, R. Ying, J. Leskovec, and P. Battaglia, Learning to simulate complex physics with graph networks, in International Conference on Machine Learning, PMLR, 2020, pp. 8459-8468.
[373] T. P. Sapsis and A. J. Majda, Statistically accurate low-order models for uncertainty quantification in turbulent dynamical systems, Proc. Natl. Acad. Sci. USA, 110 (2013), pp. 13705-13710. · Zbl 1292.62133
[374] S. Sarkar, S. Ganguly, A. Dalal, P. Saha, and S. Chakraborty, Mixed convective flow stability of nanofluids past a square cylinder by dynamic mode decomposition, Internat. J. Heat Fluid Flow, 44 (2013), pp. 624-634.
[375] D. Sashidhar and J. N. Kutz, Bagging, Optimized Dynamic Mode Decomposition (BOP-DMD) for Robust, Stable Forecasting with Spatial and Temporal Uncertainty-Quantification, preprint, https://arxiv.org/abs/2107.10878, 2021.
[376] T. Sayadi and P. J. Schmid, Parallel data-driven decomposition algorithm for large-scale datasets: With application to transitional boundary layers, Theoret. Comput. Fluid Dynam., 30 (2016), pp. 415-428.
[377] T. Sayadi, P. J. Schmid, J. W. Nichols, and P. Moin, Reduced-order representation of near-wall structures in the late transitional boundary layer, J. Fluid Mech., 748 (2014), pp. 278-301.
[378] I. Scherl, B. Strom, J. K. Shang, O. Williams, B. L. Polagye, and S. L. Brunton, Robust principal component analysis for particle image velocimetry, Phys. Rev. Fluids, 5 (2020).
[379] P. Schmid, L. Li, M. Juniper, and O. Pust, Applications of the dynamic mode decomposition, Theoret. Comput. Fluid Dynam., 25 (2011), pp. 249-259. · Zbl 1272.76179
[380] P. J. Schmid, Dynamic mode decomposition of experimental data, in 8th International Symposium on Particle Image Velocimetry, Melbourne, Victoria, Australia, 2009.
[381] P. J. Schmid, Dynamic mode decomposition of numerical and experimental data, J. Fluid Mech., 656 (2010), pp. 5-28. · Zbl 1197.76091
[382] P. J. Schmid and J. Sesterhenn, Dynamic mode decomposition of numerical and experimental data, in 61st Annual Meeting of the APS Division of Fluid Dynamics, American Physical Society, 2008.
[383] P. J. Schmid, D. Violato, and F. Scarano, Decomposition of time-resolved tomographic PIV, Exp. Fluids, 52 (2012), pp. 1567-1579.
[384] M. Schmidt and H. Lipson, Distilling free-form natural laws from experimental data, Science, 324 (2009), pp. 81-85.
[385] O. T. Schmidt and T. Colonius, Guide to spectral proper orthogonal decomposition, AIAA J., 58 (2020), pp. 1023-1033.
[386] R. Sechi, A. Sikorski, and M. Weber, Estimation of the Koopman generator by Newton’s extrapolation, Multiscale Model. Simul., 19 (2021), pp. 758-774, https://doi.org/10.1137/20M1333006. · Zbl 1470.60216
[387] A. Seena and H. J. Sung, Dynamic mode decomposition of turbulent cavity flows for self-sustained oscillations, Internat. J. Heat Fluid Flow, 32 (2011), pp. 1098-1110.
[388] O. Semeraro, G. Bellani, and F. Lundell, Analysis of time-resolved PIV measurements of a confined turbulent jet using POD and Koopman modes, Exp. Fluids, 53 (2012), pp. 1203-1220.
[389] S. C. Shadden, F. Lekien, and J. E. Marsden, Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows, Phys. D, 212 (2005), pp. 271-304. · Zbl 1161.76487
[390] A. S. Sharma, I. Mezić, and B. J. McKeon, Correspondence between Koopman mode decomposition, resolvent mode decomposition, and invariant solutions of the Navier-Stokes equations, Phys. Rev. Fluids, 1 (2016), art. 032402.
[391] H. Sharma, A. D. Fontanini, U. Vaidya, and B. Ganapathysubramanian, Transfer operator theoretic framework for monitoring building indoor environment in uncertain operating conditions, in 2018 Annual American Control Conference (ACC), IEEE, 2018, pp. 6790-6797.
[392] H. Sharma, U. Vaidya, and B. Ganapathysubramanian, A transfer operator methodology for optimal sensor placement accounting for uncertainty, Building Environ., 155 (2019), pp. 334-349.
[393] S. Sinha, B. Huang, and U. Vaidya, On robust computation of Koopman operator and prediction in random dynamical systems, J. Nonlinear Sci., 30 (2020), pp. 2057-2090, https://doi.org/10.1007/s00332-019-09597-6. · Zbl 1467.37087
[394] S. Sinha, S. P. Nandanoori, and E. Yeung, Data driven online learning of power system dynamics, in 2020 IEEE Power & Energy Society General Meeting (PESGM), 2020, pp. 1-5.
[395] S. Sinha, S. P. Nandanoori, and E. Yeung, Koopman operator methods for global phase space exploration of equivariant dynamical systems, IFAC-PapersOnLine, 53 (2020), pp. 1150-1155.
[396] S. Sinha, U. Vaidya, and R. Rajaram, Operator theoretic framework for optimal placement of sensors and actuators for control of nonequilibrium dynamics, J. Math. Anal. Appl., 440 (2016), pp. 750-772. · Zbl 1339.93059
[397] J. Slipantschuk, O. F. Bandtlow, and W. Just, Dynamic mode decomposition for analytic maps, Comm. Nonlinear Sci. Numer. Simul., 84 (2020), art. 105179, https://doi.org/10.1016/j.cnsns.2020.105179. · Zbl 1452.37087
[398] S. H. Son, A. Narasingam, and J. S.-I. Kwon, Handling Plant-Model Mismatch in Koopman Lyapunov-Based Model Predictive Control via Offset-Free Control Framework, preprint, https://arxiv.org/abs/2010.07239, 2020.
[399] G. Song, F. Alizard, J.-C. Robinet, and X. Gloerfelt, Global and Koopman modes analysis of sound generation in mixing layers, Phys. Fluids, 25 (2013), art. 124101.
[400] A. Sootla and A. Mauroy, Properties of isostables and basins of attraction of monotone systems, in 2016 Annual American Control Conference (ACC), IEEE, 2016, pp. 7365-7370.
[401] A. Sootla and A. Mauroy, Operator-theoretic characterization of eventually monotone systems, IEEE Control Syst. Lett., 2 (2018), pp. 429-434, https://doi.org/10.1109/LCSYS.2018.2841654.
[402] W.-H. Steeb and F. Wilhelm, Non-linear autonomous systems of differential equations and Carleman linearization procedure, J. Math. Anal. Appl., 77 (1980), pp. 601-611. · Zbl 0444.34014
[403] G. W. Stewart, On the early history of the singular value decomposition, SIAM Rev., 35 (1993), pp. 551-566, https://doi.org/10.1137/1035134. · Zbl 0799.01016
[404] P. Stoica and R. L. Moses, Spectral Analysis of Signals, Pearson Prentice-Hall, 2005.
[405] S. Streif, P. Rumschinski, D. Henrion, and R. Findeisen, Estimation of consistent parameter sets for continuous-time nonlinear systems using occupation measures and LMI relaxations, in 52nd IEEE Conference on Decision and Control (CDC), IEEE, 2013, pp. 6379-6384, https://doi.org/10.1109/CDC.2013.6760898.
[406] R. S. Strichartz, Fourier asymptotics of fractal measures, J. Funct. Anal., 89 (1990), pp. 154-187, https://doi.org/10.1016/0022-1236(90)90009-A. · Zbl 0693.28005
[407] S. H. Strogatz, Nonlinear Dynamics and Chaos with Student Solutions Manual: With Applications to Physics, Biology, Chemistry, and Engineering, CRC Press, 2018.
[408] Z. Suchanecki, I. Antoniou, S. Tasaki, and O. F. Bandtlow, Rigged Hilbert spaces for chaotic dynamical systems, J. Math. Phys., 37 (1996), pp. 5837-5847, https://doi.org/10.1063/1.531703. · Zbl 0860.47013
[409] A. Surana, Koopman operator based observer synthesis for control-affine nonlinear systems, in 55th IEEE Conference on Decision and Control (CDC), IEEE, 2016, pp. 6492-6499.
[410] A. Surana and A. Banaszuk, Linear observer synthesis for nonlinear systems using Koopman operator framework, IFAC-PapersOnLine, 49 (2016), pp. 716-723.
[411] A. Surana, M. O. Williams, M. Morari, and A. Banaszuk, Koopman operator framework for constrained state estimation, in 56th IEEE Conference on Decision and Control (CDC), IEEE, 2017, pp. 94-101.
[412] Y. Susuki and I. Mezić, Nonlinear Koopman modes and coherency identification of coupled swing dynamics, IEEE Trans. Power Systems, 26 (2011), pp. 1894-1904, https://doi.org/10.1109/TPWRS.2010.2103369.
[413] Y. Susuki and I. Mezić, Nonlinear Koopman modes and a precursor to power system swing instabilities, IEEE Trans. Power Systems, 27 (2012), pp. 1182-1191.
[414] Y. Susuki and I. Mezić, A prony approximation of Koopman Mode Decomposition, in 54th IEEE Conference on Decision and Control (CDC), IEEE, 2015, pp. 7022-7027, https://doi.org/10.1109/CDC.2015.7403326.
[415] Y. Susuki and I. Mezić, Invariant sets in quasiperiodically forced dynamical systems, SIAM J. Appl. Dyn. Syst., 19 (2020), pp. 329-351, https://doi.org/10.1137/18M1193529. · Zbl 1442.37012
[416] Y. Susuki, I. Mezić, and T. Hikihara, Coherent swing instability of power grids, J. Nonlinear Sci., 21 (2011), pp. 403-439. · Zbl 1223.37117
[417] A. Svenkeson, B. Glaz, S. Stanton, and B. J. West, Spectral decomposition of nonlinear systems with memory, Phys. Rev. E, 93 (2016), art. 022211, https://doi.org/10.1103/PhysRevE.93.022211.
[418] S. Svoronos, D. Papageorgiou, and C. Tsiligiannis, Discretization of nonlinear control systems via the Carleman linearization, Chem. Engrg. Sci., 49 (1994), pp. 3263-3267.
[419] K. Taira, S. L. Brunton, S. T. M. Dawson, C. W. Rowley, T. Colonius, B. J. McKeon, O. T. Schmidt, S. Gordeyev, V. Theofilis, and L. S. Ukeiley, Modal analysis of fluid flows: An overview, AIAA J., 55 (2017), pp. 4013-4041, https://doi.org/10/gdh7zw.
[420] K. Taira, M. S. Hemati, S. L. Brunton, Y. Sun, K. Duraisamy, S. Bagheri, S. T. M. Dawson, and C.-A. Yeh, Modal analysis of fluid flows: Applications and outlook, AIAA J., 58 (2020), pp. 998-1022, https://doi.org/10.2514/1.J058462.
[421] N. Takeishi, Y. Kawahara, Y. Tabei, and T. Yairi, Bayesian dynamic mode decomposition, in 26th International Joint Conference on Artificial Intelligence, 2017, pp. 2814-2821.
[422] N. Takeishi, Y. Kawahara, and T. Yairi, Learning Koopman invariant subspaces for dynamic mode decomposition, in Advances in Neural Information Processing Systems, 2017, pp. 1130-1140.
[423] N. Takeishi, Y. Kawahara, and T. Yairi, Subspace dynamic mode decomposition for stochastic Koopman analysis, Phys. Rev. E, 96 (2017), art. 033310, https://doi.org/10.1103/PhysRevE.96.033310.
[424] F. Takens, Detecting strange attractors in turbulence, in Dynamical Systems and Turbulence, Lecture Notes in Math. 898, Springer, 1981, pp. 366-381. · Zbl 0513.58032
[425] P. Tallapragada and S. D. Ross, A set oriented definition of finite-time Lyapunov exponents and coherent sets, Comm. Nonlinear Sci. Numer. Simul., 18 (2013), pp. 1106-1126. · Zbl 1345.37027
[426] Z. Q. Tang and N. Jiang, Dynamic mode decomposition of hairpin vortices generated by a hemisphere protuberance, Sci. China Phys. Mech. Astron., 55 (2012), pp. 118-124.
[427] S. Tasaki, I. Antoniou, and Z. Suchanecki, Deterministic diffusion, De Rham equation and fractal eigenvectors, Phys. Lett. A, 179 (1993), pp. 97-102, https://doi.org/10.1016/0375-9601(93)90656-K.
[428] R. Taylor, J. N. Kutz, K. Morgan, and B. A. Nelson, Dynamic mode decomposition for plasma diagnostics and validation, Rev. Sci. Instruments, 89 (2018), art. 053501.
[429] R. Tibshirani, Regression shrinkage and selection via the lasso, J. Roy. Statist. Soc. Ser. B, 58 (1996), pp. 267-288. · Zbl 0850.62538
[430] S. Tirunagari, N. Poh, K. Wells, M. Bober, I. Gorden, and D. Windridge, Movement correction in DCE-MRI through windowed and reconstruction dynamic mode decomposition, Mach. Vis. Appl., 28 (2017), pp. 393-407.
[431] A. Towne, O. T. Schmidt, and T. Colonius, Spectral proper orthogonal decomposition and its relationship to dynamic mode decomposition and resolvent analysis, J. Fluid Mech., 847 (2018), pp. 821-867. · Zbl 1404.76145
[432] L. N. Trefethen, A. E. Trefethen, S. C. Reddy, and T. A. Driscoll, Hydrodynamic stability without eigenvalues, Science, 261 (1993), pp. 578-584. · Zbl 1226.76013
[433] J. H. Tu, C. W. Rowley, E. Aram, and R. Mittal, Koopman spectral analysis of separated flow over a finite-thickness flat plate with elliptical leading edge, in 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, AIAA, 2011, art. 2011-38.
[434] J. H. Tu, C. W. Rowley, J. N. Kutz, and J. K. Shang, Spectral analysis of fluid flows using sub-Nyquist-rate PIV data, Exp. Fluids, 55 (2014), pp. 1-13.
[435] J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton, and J. N. Kutz, On dynamic mode decomposition: Theory and applications, J. Comput. Dynam., 1 (2014), pp. 391-421. · Zbl 1346.37064
[436] J. W. Tukey, The future of data analysis, Ann. Math. Statist., 33 (1962), pp. 1-67. · Zbl 0107.36401
[437] S. Ulam, Problems in Modern Mathematics, Science Editions, 1960. · Zbl 0086.24101
[438] U. Vaidya, Duality in stability theory: Lyapunov function and Lyapunov measure, in 44th Allerton Conference on Communication, Control and Computing, 2006, pp. 185-190.
[439] U. Vaidya, Observability Gramian for nonlinear systems, in 46th IEEE Conference on Decision and Control (CDC), IEEE, 2007, pp. 3357-3362.
[440] U. Vaidya, R. Rajaram, and S. Dasgupta, Actuator and sensor placement in linear advection PDE with building system application, J. Math. Anal. Appl., 394 (2012), pp. 213-224. · Zbl 1331.93024
[441] P. Van Overschee and B. De Moor, N4SID: Subspace algorithms for the identification of combined deterministic-stochastic systems, Automatica, 30 (1994), pp. 75-93. · Zbl 0787.93097
[442] P. Van Overschee and B. De Moor, Subspace Identification for Linear Systems: Theory-Implementation-Applications, Springer, 1996. · Zbl 0888.93001
[443] S. Wang, H. Wang, and P. Perdikaris, Learning the Solution Operator of Parametric Partial Differential Equations with Physics-Informed DeepOnets, preprint, https://arxiv.org/abs/2103.10974, 2021.
[444] C. Wehmeyer and F. Noé, Time-lagged autoencoders: Deep learning of slow collective variables for molecular kinetics, J. Chem. Phys., 148 (2018), pp. 1-9.
[445] N. Wiener and A. Wintner, Harmonic analysis and ergodic theory, Amer. J. Math., 63 (1941), pp. 415-426. · Zbl 0025.06504
[446] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd ed., Texts Appl. Math. 2, Springer-Verlag, New York, 2003. · Zbl 1027.37002
[447] M. O. Williams, M. S. Hemati, S. T. M. Dawson, I. G. Kevrekidis, and C. W. Rowley, Extending data-driven Koopman analysis to actuated systems, IFAC-PapersOnLine, 49 (2016), pp. 704-709.
[448] M. O. Williams, I. G. Kevrekidis, and C. W. Rowley, A data-driven approximation of the Koopman operator: Extending dynamic mode decomposition, J. Nonlinear Sci., 6 (2015), pp. 1307-1346. · Zbl 1329.65310
[449] M. O. Williams, C. W. Rowley, and I. G. Kevrekidis, A kernel approach to data-driven Koopman spectral analysis, J. Comput. Dynam., 2 (2015), pp. 247-265. · Zbl 1366.37144
[450] D. Wilson, Isostable reduction of oscillators with piecewise smooth dynamics and complex Floquet multipliers, Phys. Rev. E, 99 (2019), art. 022210, https://doi.org/10.1103/PhysRevE.99.022210.
[451] D. Wilson, A data-driven phase and isostable reduced modeling framework for oscillatory dynamical systems, Chaos, 30 (2020), art. 013121, https://doi.org/10.1063/1.5126122. · Zbl 1433.37077
[452] D. Wilson, Phase-amplitude reduction far beyond the weakly perturbed paradigm, Phys. Rev. E, 101 (2020), art. 022220, https://doi.org/10.1103/PhysRevE.101.022220.
[453] D. Wilson and J. Moehlis, Isostable reduction of periodic orbits, Phys. Rev. E, 94 (2016), art. 052213, https://doi.org/10.1103/PhysRevE.94.052213.
[454] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma, Robust face recognition via sparse representation, IEEE Trans. Pattern Anal. Mach. Intell., 31 (2009), pp. 210-227.
[455] H. Wu and F. Noé, Variational approach for learning Markov processes from time series data, J. Nonlinear Sci., 30 (2020), pp. 23-66. · Zbl 1437.37107
[456] H. Wu, F. Nüske, F. Paul, S. Klus, P. Koltai, and F. Noé, Variational Koopman models: Slow collective variables and molecular kinetics from short off-equilibrium simulations, J. Chem. Phys., 146 (2017), art. 154104.
[457] E. Yeung, S. Kundu, and N. Hodas, Learning deep neural network representations for Koopman operators of nonlinear dynamical systems, in the 2019 American Control Conference (ACC), 2019, pp. 4832-4839.
[458] E. Yeung, Z. Liu, and N. O. Hodas, A Koopman operator approach for computing and balancing Gramians for discrete time nonlinear systems, in 2018 Annual American Control Conference (ACC), IEEE, 2018, pp. 337-344.
[459] P. You, J. Pang, and E. Yeung, Deep Koopman synthesis for cyber-resilient market-based frequency regulation, IFAC-PapersOnLine, 51 (2018), pp. 720-725.
[460] M. A. Zaks and A. Nepomnyashchy, Anomalous transport in steady plane viscous flows: Simple models, in Advances in Dynamics, Patterns, Cognition, Nonlinear Systems and Complexity, Springer, Cham, 2017, pp. 61-76, https://doi.org/10.1007/978-3-319-53673-6_5.
[461] G. M. Zaslavsky, Lagrangian turbulence and anomalous transport, Fluid Dynam. Res., 8 (1991), pp. 127-133, https://doi.org/10.1016/0169-5983(91)90036-I.
[462] G. M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport, Phys. Rep., 371 (2002), pp. 461-580, https://doi.org/10.1016/S0370-1573(02)00331-9. · Zbl 0999.82053
[463] H. Zhang, C. W. Rowley, E. A. Deem, and L. N. Cattafesta, Online dynamic mode decomposition for time-varying systems, SIAM J. Appl. Dyn. Syst., 18 (2019), pp. 1586-1609, https://doi.org/10.1137/18M1192329. · Zbl 07122844
[464] Y. Zhen, B. Chapron, E. Mémin, and L. Peng, Eigenvalues of autocovariance matrix: A practical method to identify the Koopman eigenfrequencies, Phys. Rev. E, 105 (2022), art. 034205.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.