×

On robust computation of Koopman operator and prediction in random dynamical systems. (English) Zbl 1467.37087

Summary: In the paper, we consider the problem of robust approximation of transfer Koopman and Perron-Frobenius (P-F) operators from noisy time-series data. In most applications, the time-series data obtained from simulation or experiment are corrupted with either measurement or process noise or both. The existing results show the applicability of algorithms developed for the finite-dimensional approximation of the deterministic system to a random uncertain case. However, these results hold only in asymptotic and under the assumption of infinite data set. In practice, the data set is finite, and hence it is important to develop algorithms that explicitly account for the presence of uncertainty in data set. We propose a robust optimization-based framework for the robust approximation of the transfer operators, where the uncertainty in data set is treated as deterministic norm bounded uncertainty. The robust optimization leads to a min-max type optimization problem for the approximation of transfer operators. This robust optimization problem is shown to be equivalent to regularized least-square problem. This equivalence between robust optimization problem and regularized least-square problem allows us to comment on various interesting properties of the obtained solution using robust optimization. In particular, the robust optimization formulation captures inherent trade-offs between the quality of approximation and complexity of approximation. These trade-offs are necessary to balance for the proposed application of transfer operators, for the design of optimal predictor. Simulation results demonstrate that our proposed robust approximation algorithm performs better than some of the existing algorithms like extended dynamic mode decomposition (EDMD), subspace DMD, noise-corrected DMD, and total DMD for systems with process and measurement noise.

MSC:

37M99 Approximation methods and numerical treatment of dynamical systems
37C30 Functional analytic techniques in dynamical systems; zeta functions, (Ruelle-Frobenius) transfer operators, etc.
37N35 Dynamical systems in control
37N40 Dynamical systems in optimization and economics
70G60 Dynamical systems methods for problems in mechanics

References:

[1] Abu-Mostafa, YS; Magdon-Ismail, M.; Lin, H-T, Learning from Data (2012), New York: AMLBook, New York
[2] Bagheri, S., Effects of weak noise on oscillating flows: linking quality factor, floquet modes, and Koopman spectrum, Phys. Fluids, 26, 9, 094104 (2014) · doi:10.1063/1.4895898
[3] Budisic, M.; Mohr, R.; Mezic, I., Applied koopmanism, Chaos, 22, 4, 047510-33 (2012) · Zbl 1319.37013 · doi:10.1063/1.4772195
[4] Caramanis, C.; Mannor, S.; Xu, H.; Sra, S.; Nowozin, S.; Wright, SJ, Robust optimization in machine learning, Optimization for Machine Learning (2012), Cambridge: MIT Press, Cambridge
[5] Crnjaric-Zic, N., Macesic, S., Mezic, I.: Koopman operator spectrum for random dynamical system. arXiv preprint arXiv:1711.03146 (2017) · Zbl 1403.37092
[6] Dawson, ST; Hemati, MS; Williams, MO; Rowley, CW, Characterizing and correcting for the effect of sensor noise in the dynamic mode decomposition, Exp. Fluids, 57, 3, 42 (2016) · doi:10.1007/s00348-016-2127-7
[7] Dellnitz, M.; Junge, O., On the approximation of complicated dynamical behavior, SIAM J. Numer. Anal., 36, 491-515 (1999) · Zbl 0916.58021 · doi:10.1137/S0036142996313002
[8] Dellnitz, M.; Junge, O., Set oriented numerical methods for dynamical systems, Handb. Dyn. Syst., 2, 221-264 (2002) · Zbl 1036.37030 · doi:10.1016/S1874-575X(02)80026-1
[9] Dellnitz, M.; Junge, O.; Koon, WS; Lekien, F.; Lo, M.; Marsden, JE; Padberg, K.; Preis, R.; Ross, SD; Thiere, B., Transport in dynamical astronomy and multibody problems, Int. J. Bifurc. Chaos, 15, 699-727 (2005) · Zbl 1085.70012 · doi:10.1142/S0218127405012545
[10] El Ghaoui, L.; Lebret, H., Robust solutions to least-squares problems with uncertain data, SIAM J. Matrix Anal. Appl., 18, 4, 1035-1064 (1997) · Zbl 0891.65039 · doi:10.1137/S0895479896298130
[11] Froyland, G.: Extracting dynamical behaviour via Markov models. In: Mees, A. (ed.) Nonlinear Dynamics and Statistics: Proceedings, Newton Institute, Cambridge, 1998, pp. 283-324. Birkhauser (2001)
[12] Hemati, MS; Rowley, CW; Deem, EA; Cattafesta, LN, De-biasing the dynamic mode decomposition for applied Koopman spectral analysis of noisy datasets, Theor. Comput. Fluid Dyn., 31, 4, 349-368 (2017) · doi:10.1007/s00162-017-0432-2
[13] Huang, B., Vaidya, U.: Data-driven approximation of transfer operators: naturally structured dynamic mode decomposition. arXiv:1709.06203 (2016)
[14] Junge, O.; Osinga, H., A set oriented approach to global optimal control, ESAIM Control Optim. Calc. Var., 10, 2, 259-270 (2004) · Zbl 1072.49014 · doi:10.1051/cocv:2004006
[15] Junge, O., Marsden, J.E., Mezic, I.: Uncertainty in the dynamics of conservative maps. In: 43rd IEEE Conference on Decision and Control, 2004, vol. 2, pp. 2225-2230. CDC. IEEE (2004)
[16] Korda, M., Mezić, I.: Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control. arXiv preprint arXiv:1611.03537 (2016) · Zbl 1400.93079
[17] Kutluay, S.; Bahadir, A.; Ozde, A., Numerical solution of one-dimensional burgers equation: explicit and exact-explicit finite difference methods, J. Comput. Appl. Math., 103, 2, 251-261 (1999) · Zbl 0942.65094 · doi:10.1016/S0377-0427(98)00261-1
[18] Mauroy, A., Mezic, I.: A spectral operator-theoretic framework for global stability. In: Proceedings of IEEE Conference of Decision and Control, Florence, Italy (2013) · Zbl 1359.93372
[19] Mehta, P.G., Vaidya, U.: On stochastic analysis approaches for comparing dynamical systems. In: Proceeding of IEEE Conference on Decision and Control, Spain, pp. 8082-8087 (2005)
[20] Mezić, I., Spectral properties of dynamical systems, model reduction and decompositions, Nonlinear Dyn., 41, 1-3, 309-325 (2005) · Zbl 1098.37023 · doi:10.1007/s11071-005-2824-x
[21] Mezic, I., Banaszuk, A.: Comparison of systems with complex behavior: spectral methods. In: Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187), vol. 2, pp. 1224-1231 (2000)
[22] Mezić, I.; Banaszuk, A., Comparison of systems with complex behavior, Phys. D, 197, 101-133 (2004) · Zbl 1059.37072 · doi:10.1016/j.physd.2004.06.015
[23] Raghunathan, A.; Vaidya, U., Optimal stabilization using lyapunov measures, IEEE Trans. Autom. Control, 59, 5, 1316-1321 (2014) · Zbl 1360.93568 · doi:10.1109/TAC.2013.2289707
[24] Rowley, CW; Mezić, I.; Bagheri, S.; Schlatter, P.; Henningson, DS, Spectral analysis of nonlinear flows, J. Fluid Mech., 641, 115-127 (2009) · Zbl 1183.76833 · doi:10.1017/S0022112009992059
[25] Schmid, PJ, Dynamic mode decomposition of numerical and experimental data, J. Fluid Mech., 656, 5-28 (2010) · Zbl 1197.76091 · doi:10.1017/S0022112010001217
[26] Surana, A., Banaszuk, A.: Linear observer synthesis for nonlinear systems using Koopman operator framework. In: Proceedings of IFAC Symposium on Nonlinear Control Systems, Monterey, California (2016)
[27] Susuki, Y.; Mezic, I., Nonlinear Koopman modes and coherency identification of coupled swing dynamics, IEEE Trans. Power Syst., 26, 4, 1894-1904 (2011) · doi:10.1109/TPWRS.2010.2103369
[28] Takeishi, N.; Kawahara, Y.; Yairi, T., Subspace dynamic mode decomposition for stochastic Koopman analysis, Phys. Rev. E, 96, 033310 (2017) · doi:10.1103/PhysRevE.96.033310
[29] Vaidya, U.; Mehta, PG, Lyapunov measure for almost everywhere stability, IEEE Trans. Autom. Control, 53, 1, 307-323 (2008) · Zbl 1367.93447 · doi:10.1109/TAC.2007.914955
[30] Williams, MO; Kevrekidis, IG; Rowley, CW, A data-driven approximation of the Koopman operator: extending dynamic mode decomposition, J. Nonlinear Sci., 25, 6, 1307-1346 (2015) · Zbl 1329.65310 · doi:10.1007/s00332-015-9258-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.