×

Recursive dynamic mode decomposition of transient and post-transient wake flows. (English) Zbl 1383.76122

Summary: A novel data-driven modal decomposition of fluid flow is proposed, comprising key features of proper orthogonal decomposition (POD) and dynamic mode decomposition (DMD). The first mode is the normalized real or imaginary part of the DMD mode that minimizes the time-averaged residual. The \(N\)th mode is defined recursively in an analogous manner based on the residual of an expansion using the first \(N-1\) modes. The resulting recursive DMD (RDMD) modes are orthogonal by construction, retain pure frequency content and aim at low residual. Recursive DMD is applied to transient cylinder wake data and is benchmarked against POD and optimized DMD [K. K. Chen et al., J. Nonlinear Sci. 22, No. 6, 887–915 (2012; Zbl 1259.35009)] for the same snapshot sequence. Unlike POD modes, RDMD structures are shown to have purer frequency content while retaining a residual of comparable order to POD. In contrast to DMD, with exponentially growing or decaying oscillatory amplitudes, RDMD clearly identifies initial, maximum and final fluctuation levels. Intriguingly, RDMD outperforms both POD and DMD in the limit-cycle resolution from the same snapshots. Robustness of these observations is demonstrated for other parameters of the cylinder wake and for a more complex wake behind three rotating cylinders. Recursive DMD is proposed as an attractive alternative to POD and DMD for empirical Galerkin models, in particular for nonlinear transient dynamics.

MSC:

76D25 Wakes and jets

Citations:

Zbl 1259.35009

References:

[1] Bagheri, S., Koopman-mode decomposition of the cylinder wake, J. Fluid Mech., 726, 596-623, (2013) · Zbl 1287.76116 · doi:10.1017/jfm.2013.249
[2] Barkley, D.; Henderson, R. D., Three-dimensional Floquet stability analysis of the wake of a circular cylinder, J. Fluid Mech., 322, 215-241, (1996) · Zbl 0882.76028 · doi:10.1017/S0022112096002777
[3] Bergmann, M.; Cordier, L., Optimal control of the cylinder wake in the laminar regime by trust-region methods and POD reduced order models, J. Comput. Phys., 227, 7813-7840, (2008) · Zbl 1388.76073 · doi:10.1016/j.jcp.2008.04.034
[4] Bourgeois, J. A.; Martinuzzi, R. J.; Noack, B. R., Generalised phase average with applications to sensor-based flow estimation of the wall-mounted square cylinder wake, J. Fluid Mech., 736, 316-350, (2013) · Zbl 1294.76003 · doi:10.1017/jfm.2013.494
[5] Brunton, S. L.; Noack, B. R., Closed-loop turbulence control: progress and challenges, Appl. Mech. Rev., 67, 5, (2015) · doi:10.1115/1.4031175
[6] Chen, K. K.; Tu, J. H.; Rowley, C. W., Variants of dynamic mode decomposition: boundary condition, Koopman, and Fourier analyses, J. Nonlinear Sci., 22, 6, 887-915, (2012) · Zbl 1259.35009 · doi:10.1007/s00332-012-9130-9
[7] Coats, C. M., Coherent structures in combustion, Prog. Energy Combust. Sci., 22, 427-509, (1997) · doi:10.1016/S0360-1285(96)00011-1
[8] Courant, R.; Hilbert, D., Methods of Mathematical Physics, vol. 1, (1989), Wiley-VCH · Zbl 0729.00007
[9] Deane, A. E.; Kevrekidis, I. G.; Karniadakis, G. E.; Orszag, S. A., Low-dimensional models for complex geometry flows: application to grooved channels and circular cylinders, Phys. Fluids A, 3, 2337-2354, (1991) · Zbl 0746.76021 · doi:10.1063/1.857881
[10] Fletcher, C. A. J., Computational Galerkin Methods, (1984), Springer · Zbl 0533.65069 · doi:10.1007/978-3-642-85949-6
[11] Föppl, L., Wirbelbewegung hinter einen Kreiszylinder (transl.: vortex motion behind a circular cylinder), Sitzb. d. k. bayr. Akad. d. Wiss., 1, 1-18, (1913)
[12] Galerkin, B. G., Rods and plates: series occurring in various questions regarding the elastic equilibrium of rods and plates (translated), Vestn. Inzhen., 19, 897-908, (1915)
[13] Gerhard, J., Pastoor, M., King, R., Noack, B. R., Dillmann, A., Morzyński, M. & Tadmor, G.2003Model-based control of vortex shedding using low-dimensional Galerkin models. In 33rd AIAA Fluids Conference and Exhibit, Orlando, Florida, USA, Paper 2003-4262.
[14] Han, Z.-H.; Stefan, G.; Zimmermann, R., Improving variable-fidelity surrogate modeling via gradient-enhanced kriging and a generalized hybrid bridge function, Aerosp. Sci. Technol., 25, 1, 177-189, (2013) · doi:10.1016/j.ast.2012.01.006
[15] Hoarau, C.; Borée, J.; Laumonier, J.; Gervais, Y., Analysis of the wall pressure trace downstream of a separated region using extended proper orthogonal decomposition, Phys. Fluids, 18, (2006) · doi:10.1063/1.2204067
[16] Holmes, P.; Lumley, J. L.; Berkooz, G., Turbulence, Coherent Structures, Dynamical Systems and Symmetry, (1998), Cambridge University Press · Zbl 0923.76002
[17] Jørgensen, B. H.; Sørensen, J. N.; Brøns, M., Low-dimensional modeling of a driven cavity flow with two free parameters, Theor. Comput. Fluid Dyn., 16, 299-317, (2003) · Zbl 1090.76591 · doi:10.1007/s00162-002-0082-9
[18] Von Kármán, T.; Rubach, H., Über den Mechanismus des Flüssigkeits- und Luftwiderstandes, Phys. Zeitschr., XIII, 49-59, (1912) · JFM 43.0853.02
[19] Lorenz, E. N., Empirical orthogonal functions and statistical weather prediction, Tech. Rep., (1956), MIT: MIT, Department of Meteorology, Statistical Forecasting Project
[20] Lorenz, E. N., Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130-141, (1963) · Zbl 1417.37129 · doi:10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
[21] Lugt, H. J., Vortex Flow in Nature and Technology, (1995), Krieger Publishing Company
[22] Lumley, J. L.1967The structure of inhomogeneous turbulent flows. In Atmospheric Turbulence and Wave Propagation (ed. Yaglom, A. M. & Tatarski, V. I.), pp. 166-178.
[23] Mezić, I., Analysis of fluid flows via spectral properties of the Koopman operator, Annu. Rev. Fluid Mech., 45, 367-378, (2013) · Zbl 1359.76271
[24] Noack, B. R., From snapshots to modal expansions – bridging low residuals and pure frequencies, J. Fluid Mech., 802, 1-4, (2016) · Zbl 1462.76094 · doi:10.1017/jfm.2016.416
[25] Noack, B. R.; Afanasiev, K.; Morzyński, M.; Tadmor, G.; Thiele, F., A hierarchy of low-dimensional models for the transient and post-transient cylinder wake, J. Fluid Mech., 497, 335-363, (2003) · Zbl 1067.76033 · doi:10.1017/S0022112003006694
[26] Noack, B. R., Pelivan, I., Tadmor, G., Morzyński, M. & Comte, P.2004Robust low-dimensional Galerkin models of natural and actuated flows. In Fourth Aeroacoustics Workshop, pp. 0001-0012. RWTH Aachen.
[27] Oberleithner, K.; Sieber, M.; Nayeri, C. N.; Paschereit, C. O.; Petz, C.; Hege, H.-C.; Noack, B. R.; Wygnanski, I., Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction, J. Fluid Mech., 679, 383-414, (2011) · Zbl 1241.76206 · doi:10.1017/jfm.2011.141
[28] Orszag, S. A., Numerical simulation of incompressible flows within simple boundaries: accuracy, J. Fluid Mech., 49, 75-112, (1971) · Zbl 0229.76029 · doi:10.1017/S0022112071001940
[29] Rom-Kedar, V.; Leonard, A.; Wiggins, S., An analytical study of transport, mixing and chaos in unsteady vortical flow, J. Fluid Mech., 214, 347-394, (1990) · Zbl 0698.76028 · doi:10.1017/S0022112090000167
[30] Rowley, C. W.; Mezić, I.; Bagheri, S.; Schlatter, P.; Henningson, D. S., Spectral analysis of nonlinear flows, J. Fluid Mech., 645, 115-127, (2009) · Zbl 1183.76833 · doi:10.1017/S0022112009992059
[31] Schlegel, M.; Noack, B. R.; Jordan, P.; Dillmann, A.; Gröschel, E.; Schröder, W.; Wei, M.; Freund, J. B.; Lehmann, O.; Tadmor, G., On least-order flow representations for aerodynamics and aeroacoustics, J. Fluid Mech., 697, 367-398, (2012) · Zbl 1250.76142 · doi:10.1017/jfm.2012.70
[32] Schmid, P. J., Dynamic mode decomposition for numerical and experimental data, J. Fluid. Mech, 656, 5-28, (2010) · Zbl 1197.76091 · doi:10.1017/S0022112010001217
[33] Schumm, M.; Berger, E.; Monkewitz, P. A., Self-excited oscillations in the wake of two-dimensional bluff bodies and their control, J. Fluid Mech., 271, 17-53, (1994) · doi:10.1017/S0022112094001679
[34] Sieber, M.; Paschereit, C. O.; Oberleithner, K., Spectral proper orthogonal decomposition, J. Fluid Mech., 792, 798-828, (2016) · Zbl 1381.76133 · doi:10.1017/jfm.2016.103
[35] Siegel, S. G.; Seidel, J.; Fagley, C.; Luchtenburg, D. M.; Cohen, K.; Mclaughlin, T., Low dimensional modelling of a transient cylinder wake using double proper orthogonal decomposition, J. Fluid Mech., 610, 1-42, (2008) · Zbl 1188.76204 · doi:10.1017/S0022112008002115
[36] Sirovich, L., Turbulence and the dynamics of coherent structures. Part I: coherent structures, Q. Appl. Maths, XLV, 561-571, (1987) · Zbl 0676.76047
[37] Suh, Y. K., Periodic motion of a point vortex in a corner subject to a potential flow, J. Phys. Soc. Japan, 62, 3441-3445, (1993) · doi:10.1143/JPSJ.62.3441
[38] Taylor, C.; Hood, P., A numerical solution of the Navier-Stokes equations using the finite element technique, Comput. Fluids, 1, 1, 73-100, (1973) · Zbl 0328.76020 · doi:10.1016/0045-7930(73)90027-3
[39] Williamson, C. H. K., Vortex dynamics in the cylinder wake, Annu. Rev. Fluid Mech., 28, 477-539, (1996) · doi:10.1146/annurev.fl.28.010196.002401
[40] Zebib, A., Stability of viscous flow past a circular cylinder, J. Engng Maths, 21, 155-165, (1987) · Zbl 0632.76063 · doi:10.1007/BF00127673
[41] Zhang, H.-Q.; Fey, U.; Noack, B. R.; König, M.; Eckelmann, H., On the transition of the cylinder wake, Phys. Fluids, 7, 4, 779-795, (1995) · doi:10.1063/1.868601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.