×

Euclidean structures and operator theory in Banach spaces. (English) Zbl 1533.47004

Memoirs of the American Mathematical Society 1433. Providence, RI: American Mathematical Society (AMS) (ISBN 978-1-4704-6703-6/pbk; 978-1-4704-7575-8/ebook). vi, 156 p. (2023).
The book under review introduces and develops a complete functional analysis framework that allows one to use concepts and techniques of square function estimates in general Banach spaces. Square function estimates in \(L^p\) are inequalities of the form \[ \left\| \left(\sum_{j} |T_{j}f_{j}|^{2}\right)^{1/2} \right\|_{L^p} \leq C \left\| \left(\sum_{j} |f_{j}|^{2}\right)^{1/2} \right\|_{L^p}, \] involving functions \(f_{j}\) and operators \(T_j\). Such estimates are ubiquitous, and play a key role in a number of distinct areas: boundary value problems (for well posedness through the square function/maximal function equivalence), stochastic integration (to construct integrals using a variation of Itô isometry), and ergodic theory (as a step towards controling maximal functions and proving almost everywhere convergence), to name just a few.
The basic approach to freeing the concept of a square function estimate from the lattice structure of \(L^p\) spaces is to use randomisation. Using a sequence of i.i.d. \(\pm 1\) variables \(\varepsilon_{j}\), for instance, the estimate takes the form: \[ \mathbb{E} \left\| \sum_{j}\varepsilon_{j}T_{j}f_{j}\right\|_{X} \leq C \mathbb{E} \left\| \sum_{j} \varepsilon_{j} f_{j}\right\|_{X}, \] which makes sense in any Banach space \(X\), not just in \(X=L^p\). A family of operators \((T_{j})_{j \in \mathbb{N}}\) satisfying such estimates for any finite family \((f_{j})_{j \in \mathbb{N}}\) is called R-bounded. Over the past 20 years, a range of results have been extended from Hilbert spaces to Banach spaces using R-boundedness assumptions to replace uniform bounds in the Hilbertian case. A key starting point was Lutz Weis’ operator-valued Fourier multiplier theorem proven in [L. Weis, Math. Ann. 319, No. 4, 735–758 (2001; Zbl 0989.47025)].
For Banach spaces that are part of an interpolation scale containing a Hilbert space, such extensions are extrapolation results. It is thus a very interesting question to ask whether or not they relate to known extrapolation methods, such as weighted extrapolation (a square function estimate holds in \(L^p(\mathbb{R}^{d})\) for all \(1<p<\infty\) as soon as it holds in \(L^{2}(w)\) for all weights \(w \in A_{2}\)). The book under review gives a precise answer to this question, demonstrating that extending results from Hilbert to Banach spaces in a way that generalises weighted extrapolation is possible, not just in Banach spaces that are part of an interpolation scale, and not just through randomisation, but whenever appropriate Euclidean structures are available.
Euclidean structures are introduced here as families of norms \(\| \cdot \|_{\alpha}\) on powers of \(X\) such that \(\|(x_{1})\|_{\alpha} = \|x_{1}\|_{X}\) and \(\|A(x_{1},\dots,x_{n})\|_{\alpha} \leq \|A\| \|(x_{1},\dots,x_{n})\|_{\alpha}\) for all \(x_{1},\dots,x_{n} \in X\) and all matrices \(A\). By the end of Chapter 1, the authors prove the first major result about such structures: a family of operators \(\Gamma \subset \mathcal{L}(X)\) is \(\alpha\)-bounded (i.e., \(\|(T_{1}x_{1},\dots,T_{n}x_{n})\|_{\alpha} \leq C \|(x_{1},\dots,x_{n})\|_{\alpha}\) for all finite families \(T_{1},\dots,T_{n} \in \Gamma\)) if and only if it arises as the transfer of a family of operators in an operator algebra through a bounded algebra homomorphism. In simple words: operators are \(\alpha\)-bounded for some Euclidean structure \(\alpha\) if and only they come from operators on a Hilbert space! When \(X=L^p\) (or some more general Banach function space), then the Euclidean structure is unique and given by standard square functions, while the Hilbert space turns out to be a weighted \(L^2\) space. This means that the Euclidean structure theory developed here not only generalises weighted extrapolation, but also gives an explanation for why weighted extrapolation works.
This reflects the nature of the book under review, which develops a complete theory, and focuses on explaining why techniques work rather than merely on optimising their applicability. The content is described below via highlights of each chapter.
The technical heart of Chapter 1 is Lemma 1.2.5, a variation on the theme of factorisation through a Hilbert space à la Maurey-Kwapien, that explains how Euclidean structures underpin the proofs of factorisation results. The key theorem about transfer from an operator algebra is proven here in Theorem 1.4.6.
The link with weighted extrapolation is then made in Chapter 2. The insight gained through that link bears fruits in Theorem 2.4.4, which gives a strikingly simple approach to the boundedness of the Hardy-Littlewood maximal function in Banach function spaces.
Chapter 3 constructs Banach spaces \(\alpha(\mathbb{R};X)\) associated with Euclidean structures. For the Euclidean structure arising from randomisation with i.i.d Gaussians, this coincides with the space \(\gamma(L^{2}(\mathbb{R});X)\) of \(\gamma\) radonifying operators that play a key role in Banach space valued stochastic analysis. The authors also develop an interpolation method between two Banach spaces \(X, Y\) with an Euclidean structure \(\alpha\), using the spaces \(\alpha(\mathbb{R};X)\) and \(\alpha(\mathbb{R};Y)\) (Subsection 3.3). This means that, while an Euclidean structure may not originate from an interpolation scale, interpolation scales can be constructed for two Banach spaces with the same Euclidean structure.
Chapter 4 extends classical results about R-boundedness to general Euclidean structures, focusing on the foundational results from [N. J. Kalton and L. Weis, Math. Ann. 321, No. 2, 319–345 (2001; Zbl 0992.47005)]. Again, a key feature of the theory is that it does not only generalise R-boundedness results, but also explains why they work. Theorem 4.4.1, in particular, applies the Hilbertian representation theory of Chapter 3 to show that, given an operator \(A\) acting on a Banach space \(X\), and satisfying appropriate \(\alpha\) boundedness assumptions, one can construct an operator \(\tilde{A}\) acting on a Hilbert space \(H\) such that \(\|f(A)\|_{\mathcal{L}(X)} \lesssim \|f(\tilde{A})\|_{\mathcal{L}(H)}\). Many functional calculus results can then be reproved as corollaries of this theorem, rather than by designing a R-bounded version of the Hilbertian proof.
Chapter 5 further develops the idea of constructing Banach spaces from Euclidean structures, just like classical function spaces can be constructed from Littlewood-Paley square functions. This culminates in Theorem 5.4.3 which establishes \(H^{\infty}\) calculus on specific square function spaces without relying on an \(\alpha\) (almost) sectoriality assumption. Its proof showcases the entire theory: Theorem 1.4.6 connects \(\alpha\)-boundedness to operator algebras, this gives Theorem 4.4.1 that transfers functional calculus from Hilbert to Banach spaces, which then gives Theorem 4.5.6 that reduces boundedness of the \(H^{\infty}\) calculus to \(\beta\)-BIP for some \(\beta\). All the authors have left to do is to exhibit an appropriate (simple and natural, as it turns out) Euclidean structure \(\beta\).
Chapter 6 first revisits the famous counterexamples of sectorial operators that are not R-sectorial from [N. J. Kalton and G. Lancien, Math. Z. 235, No. 3, 559–568 (2000; Zbl 1010.47024)]. It is shown that these counterexamples can be tweaked to give sectorial operators that are not almost \(\alpha\)-sectorial, as well as almost \(\alpha\)-sectorial operators that are not \(\alpha\)-sectorial. This uses classical, but highly refined, techniques from the theory of Schauder bases, and gives counterexamples in many spaces, including all \(L^p\) spaces for \(p\neq 2\).
The memoir ends (Subsection 6.4) with a long awaited and stunning counterexample of an operator that has a bounded \(H^{\infty}\) functional calculus, but only for an angle larger than the angle of sectoriality. Such behaviour is highly pathological, as these angles usually coincide (see, e.g., [A. Carbonaro and O. Dragičević, Duke Math. J. 166, No. 5, 937–974 (2017; Zbl 1476.47015)]). The existence of counterexamples was known since 2003, but only on specifically constructed Banach spaces. Here, the authors use a difficult construction on subspaces of \(L^{p}\), based on counter-intuitive non-isomorphic properties of the square function spaces in the absence of almost \(\alpha\)-sectoriality.

MSC:

47-02 Research exposition (monographs, survey articles) pertaining to operator theory
47A60 Functional calculus for linear operators
47A68 Factorization theory (including Wiener-Hopf and spectral factorizations) of linear operators
42B25 Maximal functions, Littlewood-Paley theory
47A56 Functions whose values are linear operators (operator- and matrix-valued functions, etc., including analytic and meromorphic ones)
47B12 Sectorial operators
46E30 Spaces of measurable functions (\(L^p\)-spaces, Orlicz spaces, Köthe function spaces, Lorentz spaces, rearrangement invariant spaces, ideal spaces, etc.)
46B20 Geometry and structure of normed linear spaces
46B70 Interpolation between normed linear spaces

References:

[1] Arhancet, C\'{e}dric, Isometric dilations and \(H^\infty\) calculus for bounded analytic semigroups and Ritt operators, Trans. Amer. Math. Soc., 6899-6933 (2017) · Zbl 1369.47017 · doi:10.1090/tran/6849
[2] Albrecht, David, Holomorphic functional calculi and sums of commuting operators, Bull. Austral. Math. Soc., 291-305 (1998) · Zbl 0921.47017 · doi:10.1017/S0004972700032251
[3] Albiac, Fernando, Topics in Banach space theory, Graduate Texts in Mathematics, xx+508 pp. (2016), Springer, [Cham] · Zbl 1352.46002 · doi:10.1007/978-3-319-31557-7
[4] Arnold, Loris, New counterexamples on Ritt operators, sectorial operators and \(R\)-boundedness, Bull. Aust. Math. Soc., 498-506 (2019) · Zbl 07133758 · doi:10.1017/s0004972719000431
[5] D.W. Albrecht, Functional calculi of commuting unbounded operators, Ph.D. thesis, Monash University Clayton, 1994.
[6] Amenta, Alex, Rescaled extrapolation for vector-valued functions, Publ. Mat., 155-182 (2019) · Zbl 1412.42045 · doi:10.5565/PUBLMAT6311905
[7] Auscher, Pascal, Holomorphic functional calculi of operators, quadratic estimates and interpolation, Indiana Univ. Math. J., 375-403 (1997) · Zbl 0903.47011 · doi:10.1512/iumj.1997.46.1180
[8] Auscher, Pascal, On necessary and sufficient conditions for \(L^p\)-estimates of Riesz transforms associated to elliptic operators on \(\mathbb{R}^n\) and related estimates, Mem. Amer. Math. Soc., xviii+75 pp. (2007) · Zbl 1221.42022 · doi:10.1090/memo/0871
[9] Baillon, J.-B., Examples of unbounded imaginary powers of operators, J. Funct. Anal., 419-434 (1991) · Zbl 0811.47011 · doi:10.1016/0022-1236(91)90119-P
[10] Boyadzhiev, K., Semigroups and resolvents of bounded variation, imaginary powers and \(H^\infty\) functional calculus, Semigroup Forum, 372-384 (1992) · Zbl 0779.47036 · doi:10.1007/BF03025777
[11] Blunck, S\"{o}nke, Calder\'{o}n-Zygmund theory for non-integral operators and the \(H^\infty\) functional calculus, Rev. Mat. Iberoamericana, 919-942 (2003) · Zbl 1057.42010 · doi:10.4171/RMI/374
[12] Blecher, David P., Operator algebras and their modules-an operator space approach, London Mathematical Society Monographs. New Series, x+387 pp. (2004), The Clarendon Press, Oxford University Press, Oxford · Zbl 1061.47002 · doi:10.1093/acprof:oso/9780198526599.001.0001
[13] Bourgain, J., Extension of a result of Benedek, Calder\'{o}n and Panzone, Ark. Mat., 91-95 (1984) · Zbl 0548.46022 · doi:10.1007/BF02384373
[14] Blecher, David P., A characterization of operator algebras, J. Funct. Anal., 188-201 (1990) · Zbl 0714.46043 · doi:10.1016/0022-1236(90)90010-I
[15] Calder\'{o}n, A.-P., Intermediate spaces and interpolation, the complex method, Studia Math., 113-190 (1964) · Zbl 0204.13703 · doi:10.4064/sm-24-2-113-190
[16] Carbonaro, Andrea, Functional calculus for some perturbations of the Ornstein-Uhlenbeck operator, Math. Z., 313-347 (2009) · Zbl 1168.47014 · doi:10.1007/s00209-008-0375-9
[17] Carbonaro, Andrea, Functional calculus for generators of symmetric contraction semigroups, Duke Math. J., 937-974 (2017) · Zbl 1476.47015 · doi:10.1215/00127094-3774526
[18] Carbonaro, Andrea, Bounded holomorphic functional calculus for nonsymmetric Ornstein-Uhlenbeck operators, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 1497-1533 (2019) · Zbl 1445.47014
[19] Carbonaro, Andrea, Bilinear embedding for divergence-form operators with complex coefficients on irregular domains, Calc. Var. Partial Differential Equations, Paper No. 104, 36 pp. (2020) · Zbl 1444.35089 · doi:10.1007/s00526-020-01751-3
[20] Carbonaro, Andrea, Convexity of power functions and bilinear embedding for divergence-form operators with complex coefficients, J. Eur. Math. Soc. (JEMS), 3175-3221 (2020) · Zbl 1458.35148 · doi:10.4171/jems/984
[21] Cowling, Michael, Banach space operators with a bounded \(H^\infty\) functional calculus, J. Austral. Math. Soc. Ser. A, 51-89 (1996) · Zbl 0853.47010
[22] Coulhon, Thierry, S\'{e}minaire d’Analyse Fonctionelle 1984/1985. R\'{e}gularit\'{e} \(L^p\) pour les \'{e}quations d’\'{e}volution, Publ. Math. Univ. Paris VII, 155-165 (1986), Univ. Paris VII, Paris · Zbl 0641.47046
[23] Cruz-Uribe, David V., Weights, extrapolation and the theory of Rubio de Francia, Operator Theory: Advances and Applications, xiv+280 pp. (2011), Birkh\"{a}user/Springer Basel AG, Basel · Zbl 1234.46003 · doi:10.1007/978-3-0348-0072-3
[24] Cruz-Uribe, David, Sharp weighted estimates for classical operators, Adv. Math., 408-441 (2012) · Zbl 1236.42010 · doi:10.1016/j.aim.2011.08.013
[25] Conway, John B., A course in functional analysis, Graduate Texts in Mathematics, xvi+399 pp. (1990), Springer-Verlag, New York · Zbl 0706.46003
[26] Cl\'{e}ment, Philippe, Evolution equations and their applications in physical and life sciences. An operator-valued transference principle and maximal regularity on vector-valued \(L_p\)-spaces, Lecture Notes in Pure and Appl. Math., 67-87 (1998), Dekker, New York
[27] Cl\'{e}ment, P., Schauder decomposition and multiplier theorems, Studia Math., 135-163 (2000) · Zbl 0955.46004
[28] Cox, Sonja, Vector-valued decoupling and the Burkholder-Davis-Gundy inequality, Illinois J. Math., 343-375 (2012) (2011) · Zbl 1276.60017
[29] Denk, Robert, \( \mathcal{R} \)-boundedness, Fourier multipliers and problems of elliptic and parabolic type, Mem. Amer. Math. Soc., viii+114 pp. (2003) · Zbl 1274.35002 · doi:10.1090/memo/0788
[30] Diestel, Joe, Absolutely summing operators, Cambridge Studies in Advanced Mathematics, xvi+474 pp. (1995), Cambridge University Press, Cambridge · Zbl 0855.47016 · doi:10.1017/CBO9780511526138
[31] Deleaval, Luc, Dimension free bounds for the vector-valued Hardy-Littlewood maximal operator, Rev. Mat. Iberoam., 101-123 (2019) · Zbl 1418.42027 · doi:10.4171/rmi/1050
[32] Deleaval, Luc, H\"{o}rmander functional calculus on UMD lattice valued \(L^p\) spaces under generalized Gaussian estimates, J. Anal. Math., 177-234 (2021) · Zbl 1481.42012 · doi:10.1007/s11854-021-0177-0
[33] Dales, H. G., Multi-norms and Banach lattices, Dissertationes Math., 115 pp. (2017) · Zbl 1380.46011 · doi:10.4064/dm755-11-2016
[34] Duong, Xuan Thinh, Singular integral operators with non-smooth kernels on irregular domains, Rev. Mat. Iberoamericana, 233-265 (1999) · Zbl 0980.42007 · doi:10.4171/RMI/255
[35] Dore, Giovanni, \(H^\infty\) functional calculus in real interpolation spaces, Studia Math., 161-167 (1999) · Zbl 0957.47016 · doi:10.4064/sm-137-2-161-167
[36] Dore, Giovanni, \(H^\infty\) functional calculus in real interpolation spaces. II, Studia Math., 75-83 (2001) · Zbl 0985.47015 · doi:10.4064/sm145-1-5
[37] Dales, H. G., Multi-normed spaces, Dissertationes Math., 165 pp. (2012) · Zbl 1381.46020 · doi:10.4064/dm488-0-1
[38] Duong, Xuan T., Semigroup kernels, Poisson bounds, and holomorphic functional calculus, J. Funct. Anal., 89-128 (1996) · Zbl 0932.47013 · doi:10.1006/jfan.1996.0145
[39] Dore, Giovanni, On the closedness of the sum of two closed operators, Math. Z., 189-201 (1987) · Zbl 0615.47002 · doi:10.1007/BF01163654
[40] Egert, Moritz, \(L^p\)-estimates for the square root of elliptic systems with mixed boundary conditions, J. Differential Equations, 1279-1323 (2018) · Zbl 1513.35218 · doi:10.1016/j.jde.2018.04.002
[41] Egert, Moritz, On \(p\)-elliptic divergence form operators and holomorphic semigroups, J. Evol. Equ., 705-724 (2020) · Zbl 1519.47045 · doi:10.1007/s00028-019-00537-1
[42] ter Elst, A. F. M., On the \({\rm L}^p\)-theory for second-order elliptic operators in divergence form with complex coefficients, J. Evol. Equ., 3963-4003 (2021) · Zbl 1482.35086 · doi:10.1007/s00028-021-00711-4
[43] Eidelheit, M., On isomorphisms of rings of linear operators, Studia Math., 97-105 (1940) · JFM 66.0548.01 · doi:10.4064/sm-9-1-97-105
[44] Engel, Klaus-Jochen, One-parameter semigroups for linear evolution equations, Graduate Texts in Mathematics, xxii+586 pp. (2000), Springer-Verlag, New York · Zbl 0952.47036
[45] Effros, Edward G., Operator spaces, London Mathematical Society Monographs. New Series, xvi+363 pp. (2000), The Clarendon Press, Oxford University Press, New York · Zbl 0969.46002
[46] Fackler, Stephan, An explicit counterexample for the \(L^p\)-maximal regularity problem, C. R. Math. Acad. Sci. Paris, 53-56 (2013) · Zbl 1266.47063 · doi:10.1016/j.crma.2013.01.013
[47] Fackler, Stephan, The Kalton-Lancien theorem revisited: maximal regularity does not extrapolate, J. Funct. Anal., 121-138 (2014) · Zbl 1472.47031 · doi:10.1016/j.jfa.2013.09.006
[48] Fackler, Stephan, On the structure of semigroups on \(L_p\) with a bounded \(H^\infty \)-calculus, Bull. Lond. Math. Soc., 1063-1076 (2014) · Zbl 1311.47017 · doi:10.1112/blms/bdu062
[49] Fackler, Stephan, Operator semigroups meet complex analysis, harmonic analysis and mathematical physics. Regularity properties of sectorial operators: counterexamples and open problems, Oper. Theory Adv. Appl., 171-197 (2015), Birkh\"{a}user/Springer, Cham · Zbl 1338.47045 · doi:10.1007/978-3-319-18494-4\_12
[50] Fackler, Stephan, Maximal regularity: positive counterexamples on UMD-Banach lattices and exact intervals for the negative solution of the extrapolation problem, Proc. Amer. Math. Soc., 2015-2028 (2016) · Zbl 1337.47057 · doi:10.1090/proc/13012
[51] Franks, Edwin, Discrete quadratic estimates and holomorphic functional calculi in Banach spaces, Bull. Austral. Math. Soc., 271-290 (1998) · Zbl 0942.47011 · doi:10.1017/S000497270003224X
[52] Figiel, T., Projections onto Hilbertian subspaces of Banach spaces, Israel J. Math., 155-171 (1979) · Zbl 0427.46010 · doi:10.1007/BF02760556
[53] Fr\"{o}hlich, Andreas M., \(H^\infty\) calculus and dilations, Bull. Soc. Math. France, 487-508 (2006) · Zbl 1168.47015 · doi:10.24033/bsmf.2520
[54] Garling, D. J. H., Probability in Banach spaces 6. Random martingale transform inequalities, Progr. Probab., 101-119 (1986), Birkh\"{a}user Boston, Boston, MA · Zbl 0701.60003
[55] Garnett, John B., Bounded analytic functions, Graduate Texts in Mathematics, xiv+459 pp. (2007), Springer, New York · Zbl 1106.30001
[56] Garc\'{\i }a-Cuerva, Jos\'{e}, Functional calculus for the Ornstein-Uhlenbeck operator, J. Funct. Anal., 413-450 (2001) · Zbl 0995.47010 · doi:10.1006/jfan.2001.3757
[57] Geiss, Stefan, A counterexample concerning the relation between decoupling constants and UMD-constants, Trans. Amer. Math. Soc., 1355-1375 (1999) · Zbl 0910.46007 · doi:10.1090/S0002-9947-99-02093-0
[58] Garc\'{\i }a-Cuerva, J., Interaction between functional analysis, harmonic analysis, and probability. On the Fourier type of Banach lattices, Lecture Notes in Pure and Appl. Math., 169-179 (1994), Dekker, New York
[59] Giannopoulos, Apostolos A., Handbook of the geometry of Banach spaces, Vol. I. Euclidean structure in finite dimensional normed spaces, 707-779 (2001), North-Holland, Amsterdam · Zbl 1009.46004 · doi:10.1016/S1874-5849(01)80019-X
[60] Garc\'{\i }a-Cuerva, J., The Hardy-Littlewood property of Banach lattices, Israel J. Math., 177-201 (1993) · Zbl 0812.46008 · doi:10.1007/BF02764641
[61] Garc\'{\i }a-Cuerva, Jos\'{e}, Weighted norm inequalities and related topics, North-Holland Mathematics Studies, x+604 pp. (1985), North-Holland Publishing Co., Amsterdam · Zbl 0578.46046
[62] Grafakos, Loukas, Classical Fourier analysis, Graduate Texts in Mathematics, xviii+638 pp. (2014), Springer, New York · Zbl 1304.42001 · doi:10.1007/978-1-4939-1194-3
[63] Haase, Markus, Spectral properties of operator logarithms, Math. Z., 761-779 (2003) · Zbl 1065.47014 · doi:10.1007/s00209-003-0569-0
[64] Haase, Markus, The functional calculus for sectorial operators, Operator Theory: Advances and Applications, xiv+392 pp. (2006), Birkh\"{a}user Verlag, Basel · Zbl 1101.47010 · doi:10.1007/3-7643-7698-8
[65] Haase, Markus, Operator-valued \(H^\infty \)-calculus in inter- and extrapolation spaces, Integral Equations Operator Theory, 197-228 (2006) · Zbl 1099.47014 · doi:10.1007/s00020-006-1418-4
[66] Harris, Sean, Optimal angle of the holomorphic functional calculus for the Ornstein-Uhlenbeck operator, Indag. Math. (N.S.), 854-861 (2019) · Zbl 1441.47051 · doi:10.1016/j.indag.2019.05.006
[67] H\"{a}nninen, Timo S., The \(A_2\) theorem and the local oscillation decomposition for Banach space valued functions, J. Operator Theory, 193-218 (2014) · Zbl 1313.42037 · doi:10.7900/jot.2012nov21.1972
[68] Hoffmann, M., \(R\)-bounded approximating sequences and applications to semigroups, J. Math. Anal. Appl., 373-386 (2004) · Zbl 1045.47015 · doi:10.1016/j.jmaa.2003.10.048
[69] H\"{a}nninen, Timo S., Sparse domination for the lattice Hardy-Littlewood maximal operator, Proc. Amer. Math. Soc., 271-284 (2019) · Zbl 1451.42028 · doi:10.1090/proc/14236
[70] Hyt\"{o}nen, Tuomas, Quantitative affine approximation for UMD targets, Discrete Anal., Paper No. 6, 37 pp. (2016) · Zbl 1362.46008 · doi:10.19086/da.614
[71] Hyt\"{o}nen, Tuomas, Analysis in Banach spaces. Vol. I. Martingales and Littlewood-Paley theory, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], xvi+614 pp. (2016), Springer, Cham · Zbl 1366.46001
[72] Hyt\"{o}nen, Tuomas, Analysis in Banach spaces. Vol. II, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], xxi+616 pp. (2017), Springer, Cham · Zbl 1402.46002 · doi:10.1007/978-3-319-69808-3
[73] Hyt\"{o}nen, Tuomas, \(R\)-boundedness of smooth operator-valued functions, Integral Equations Operator Theory, 373-402 (2009) · Zbl 1191.46013 · doi:10.1007/s00020-009-1663-4
[74] Hyt\"{o}nen, Tuomas P., Operator semigroups meet complex analysis, harmonic analysis and mathematical physics. A quantitative Coulhon-Lamberton theorem, Oper. Theory Adv. Appl., 273-279 (2015), Birkh\"{a}user/Springer, Cham · Zbl 1347.42027 · doi:10.1007/978-3-319-18494-4\_17
[75] Jameson, G. J. O., Summing and nuclear norms in Banach space theory, London Mathematical Society Student Texts, xii+174 pp. (1987), Cambridge University Press, Cambridge · Zbl 0634.46007 · doi:10.1017/CBO9780511569166
[76] Johnson, W. B., Every \(L_p\) operator is an \(L_2\) operator, Proc. Amer. Math. Soc., 309-312 (1978) · Zbl 0391.46026 · doi:10.2307/2042798
[77] Kalton, N. J., Trends in Banach spaces and operator theory. A remark on sectorial operators with an \(H^\infty \)-calculus, Contemp. Math., 91-99 (2001), Amer. Math. Soc., Providence, RI · Zbl 1058.47011 · doi:10.1090/conm/321/05637
[78] Kalton, Nigel J., CMA/AMSI Research Symposium “Asymptotic Geometric Analysis, Harmonic Analysis, and Related Topics”. A remark on the \(H^\infty \)-calculus, Proc. Centre Math. Appl. Austral. Nat. Univ., 81-90 (2007), Austral. Nat. Univ., Canberra · Zbl 1160.47013
[79] Kalton, N. J., Rademacher bounded families of operators on \(L_1\), Proc. Amer. Math. Soc., 263-272 (2008) · Zbl 1138.47027 · doi:10.1090/S0002-9939-07-09046-6
[80] Kalton, N. J., Operators with an absolute functional calculus, Math. Ann., 259-306 (2010) · Zbl 1191.47019 · doi:10.1007/s00208-009-0399-4
[81] Kalton, Nigel, Perturbation and interpolation theorems for the \(H^\infty \)-calculus with applications to differential operators, Math. Ann., 747-801 (2006) · Zbl 1111.47020 · doi:10.1007/s00208-005-0742-3
[82] Kalton, N. J., A solution to the problem of \(L^p\)-maximal regularity, Math. Z., 559-568 (2000) · Zbl 1010.47024 · doi:10.1007/PL00004816
[83] Kalton, N. J., \(L^p\)-maximal regularity on Banach spaces with a Schauder basis, Arch. Math. (Basel), 397-408 (2002) · Zbl 1032.47023 · doi:10.1007/s00013-002-8264-7
[84] Kriegler, Christoph, Tensor extension properties of \(C(K)\)-representations and applications to unconditionality, J. Aust. Math. Soc., 205-230 (2010) · Zbl 1198.47029 · doi:10.1017/S1446788709000433
[85] Kunstmann, Peer, \( \mathcal{R}_s\)-sectorial operators and generalized Triebel-Lizorkin spaces, J. Fourier Anal. Appl., 135-185 (2014) · Zbl 1316.46036 · doi:10.1007/s00041-013-9307-0
[86] Kunstmann, Peer Christian, A new interpolation approach to spaces of Triebel-Lizorkin type, Illinois J. Math., 1-19 (2015) · Zbl 1346.46018
[87] Kwapie\'{n}, Stanislaw, \(R\)-boundedness versus \(\gamma \)-boundedness, Ark. Mat., 125-145 (2016) · Zbl 1357.46016 · doi:10.1007/s11512-015-0223-1
[88] Kalton, N. J., The \(H^\infty \)-calculus and sums of closed operators, Math. Ann., 319-345 (2001) · Zbl 0992.47005 · doi:10.1007/s002080100231
[89] Kunstmann, Peer C., Functional analytic methods for evolution equations. Maximal \(L_p\)-regularity for parabolic equations, Fourier multiplier theorems and \(H^\infty \)-functional calculus, Lecture Notes in Math., 65-311 (2004), Springer, Berlin · Zbl 1097.47041 · doi:10.1007/978-3-540-44653-8\_2
[90] Kucherenko, T., Real interpolation of domains of sectorial operators on \(L_p\)-spaces, J. Math. Anal. Appl., 278-285 (2005) · Zbl 1170.47303 · doi:10.1016/j.jmaa.2005.02.009
[91] Kunstmann, Peer, Erratum to: Perturbation and interpolation theorems for the \(H^\infty \)-calculus with applications to differential operators [MR2255174], Math. Ann., 801-804 (2013) · Zbl 1277.47020 · doi:10.1007/s00208-011-0768-7
[92] N.J. Kalton and L. Weis, The \(H^\infty \)-functional calculus and square function estimates., Selecta. Volume 1., Basel: Birkh\"auser/Springer, 2016, pp. 716-764 (English). · Zbl 1385.47008
[93] Kriegler, Christoph, Paley-Littlewood decomposition for sectorial operators and interpolation spaces, Math. Nachr., 1488-1525 (2016) · Zbl 1350.42036 · doi:10.1002/mana.201400223
[94] Kunstmann, Peer Christian, New criteria for the \(H^\infty \)-calculus and the Stokes operator on bounded Lipschitz domains, J. Evol. Equ., 387-409 (2017) · Zbl 1396.42003 · doi:10.1007/s00028-016-0360-4
[95] Kwapie\'{n}, S., Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients, Studia Math., 583-595 (1972) · Zbl 0256.46024 · doi:10.4064/sm-44-6-583-595
[96] Lancien, Gilles, Counterexamples concerning sectorial operators, Arch. Math. (Basel), 388-398 (1998) · Zbl 0944.47011 · doi:10.1007/s000130050282
[97] Lancien, Florence, Square functions and \(H^\infty\) calculus on subspaces of \(L^p\) and on Hardy spaces, Math. Z., 101-115 (2005) · Zbl 1096.47019 · doi:10.1007/s00209-005-0790-0
[98] N. Lindemulder and E. Lorist, A discrete framework for the interpolation of Banach spaces, preprint, 2105.08373, 2023. · Zbl 1490.46020
[99] Lancien, Florence, A joint functional calculus for sectorial operators with commuting resolvents, Proc. London Math. Soc. (3), 387-414 (1998) · Zbl 0904.47015 · doi:10.1112/S0024611598000501
[100] Le Merdy, Christian, On dilation theory for \(c_0\)-semigroups on Hilbert space, Indiana Univ. Math. J., 945-959 (1996) · Zbl 0876.47009 · doi:10.1512/iumj.1996.45.1191
[101] Le Merdy, Christian, The similarity problem for bounded analytic semigroups on Hilbert space, Semigroup Forum, 205-224 (1998) · Zbl 0998.47028 · doi:10.1007/PL00005942
[102] Le Merdy, Christian, On square functions associated to sectorial operators, Bull. Soc. Math. France, 137-156 (2004) · Zbl 1066.47013 · doi:10.24033/bsmf.2462
[103] Le Merdy, Christian, \( \gamma \)-Bounded representations of amenable groups, Adv. Math., 1641-1671 (2010) · Zbl 1209.22004 · doi:10.1016/j.aim.2010.01.019
[104] Le Merdy, Christian, A sharp equivalence between \(H^\infty\) functional calculus and square function estimates, J. Evol. Equ., 789-800 (2012) · Zbl 1275.47034 · doi:10.1007/s00028-012-0154-2
[105] Lorist, Emiel, Vector-valued extensions of operators through multilinear limited range extrapolation, J. Fourier Anal. Appl., 2608-2634 (2019) · Zbl 1423.42037 · doi:10.1007/s00041-019-09675-z
[106] Lorist, Emiel, Sparse domination implies vector-valued sparse domination, Math. Z., 1107-1141 (2022) · Zbl 1486.42033 · doi:10.1007/s00209-021-02943-z
[107] Lambert, Anselm, Operator space structure and amenability for Fig\`a-Talamanca-Herz algebras, J. Funct. Anal., 245-269 (2004) · Zbl 1072.47064 · doi:10.1016/j.jfa.2003.08.009
[108] E. Lorist, Maximal functions, factorization, and the \(\mathcal R\)-boundedness of integral operators, Master’s thesis, Delft University of Technology, Delft, the Netherlands, 2016.
[109] Lorist, Emiel, Positivity and noncommutative analysis. The \(\ell^s\)-boundedness of a family of integral operators on UMD Banach function spaces, Trends Math., 365-379 ([2019] ©2019), Birkh\"{a}user/Springer, Cham · Zbl 1440.42064 · doi:10.1007/978-3-030-10850-2\_20
[110] G.Ya. Lozanovskii, On some Banach lattices, Siberian Mathematical Journal 10 (1969), no. 3, 419-431. · Zbl 0194.43302
[111] Lions, J.-L., Sur une classe d’espaces d’interpolation, Inst. Hautes \'{E}tudes Sci. Publ. Math., 5-68 (1964) · Zbl 0148.11403
[112] Linde, V., Mappings of Gaussian measures of cylindrical sets in Banach spaces, Teor. Verojatnost. i Primenen., 472-487 (1974)
[113] Le Merdy, Christian, A factorization property of \(R\)-bounded sets of operators on \(L^p\)-spaces, Math. Nachr., 146-155 (2002) · Zbl 1157.47308 · doi:10.1002/1522-2616(200209)243:1<146::AID-MANA146>3.0.CO;2-O
[114] Lindenstrauss, Joram, Classical Banach spaces. I, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 92, xiii+188 pp. (1977), Springer-Verlag, Berlin-New York · Zbl 0362.46013
[115] Lindenstrauss, Joram, Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], x+243 pp. (1979), Springer-Verlag, Berlin-New York · Zbl 0403.46022
[116] Lindenstrauss, J., Banach spaces with a unique unconditional basis, J. Functional Analysis, 115-125 (1969) · Zbl 0174.17201 · doi:10.1016/0022-1236(69)90054-8
[117] Marcolino Nhani, Jos\'{e} L., La structure des sous-espaces de treillis, Dissertationes Math. (Rozprawy Mat.), 50 pp. (2001) · Zbl 0990.46007 · doi:10.4064/dm397-0-1
[118] Maurey, B., S\'{e}minaire Maurey-Schwartz Ann\'{e}e 1972-1973: Espaces \(L^p\) et applications radonifiantes, Exp. No. 15. Th\'{e}or\`emes de factorisation pour les op\'{e}rateurs lin\'{e}aires \`a valeurs dans un espace \(L^p(U, \mu ), 0<{\it p}\leq +\infty , 8\) pp. (1973), Centre de Math., \'{E}cole Polytech., Paris · Zbl 0264.47023
[119] Maurey, Bernard, Un th\'{e}or\`eme de prolongement, C. R. Acad. Sci. Paris S\'{e}r. A, 329-332 (1974) · Zbl 0291.47001
[120] McIntosh, Alan, Miniconference on operator theory and partial differential equations. Operators which have an \(H_\infty\) functional calculus, Proc. Centre Math. Anal. Austral. Nat. Univ., 210-231 (1986), Austral. Nat. Univ., Canberra · Zbl 0634.47016
[121] Monniaux, Sylvie, A perturbation result for bounded imaginary powers, Arch. Math. (Basel), 407-417 (1997) · Zbl 0877.47012 · doi:10.1007/s000130050073
[122] Milman, Vitali D., Asymptotic theory of finite-dimensional normed spaces, Lecture Notes in Mathematics, viii+156 pp. (1986), Springer-Verlag, Berlin · Zbl 0606.46013
[123] Niki\v{s}in, E. M., Resonance theorems and superlinear operators, Uspehi Mat. Nauk, 129-191 (1970) · Zbl 0222.47024
[124] Oikhberg, T., Injectivity and projectivity in \(p\)-multinormed spaces, Positivity, 1023-1037 (2018) · Zbl 1407.46015 · doi:10.1007/s11117-018-0557-6
[125] Os\polhk ekowski, Adam, The Hilbert transform and orthogonal martingales in Banach spaces, Int. Math. Res. Not. IMRN, 11670-11730 (2021) · Zbl 1497.46011 · doi:10.1093/imrn/rnz187
[126] Paulsen, Vern, Completely bounded maps and operator algebras, Cambridge Studies in Advanced Mathematics, xii+300 pp. (2002), Cambridge University Press, Cambridge · Zbl 1029.47003
[127] Peetre, Jaak, Sur la transformation de Fourier des fonctions \`a valeurs vectorielles, Rend. Sem. Mat. Univ. Padova, 15-26 (1969) · Zbl 0241.46033
[128] Petermichl, Stefanie, The sharp weighted bound for the Riesz transforms, Proc. Amer. Math. Soc., 1237-1249 (2008) · Zbl 1142.42005 · doi:10.1090/S0002-9939-07-08934-4
[129] Pietsch, Albrecht, Operator ideals, North-Holland Mathematical Library, 451 pp. (1980), North-Holland Publishing Co., Amsterdam-New York · Zbl 0434.47030
[130] Pisier, Gilles, Some results on Banach spaces without local unconditional structure, Compositio Math., 3-19 (1978) · Zbl 0381.46010
[131] Pisier, Gilles, Holomorphic semigroups and the geometry of Banach spaces, Ann. of Math. (2), 375-392 (1982) · Zbl 0487.46008 · doi:10.2307/1971396
[132] Pisier, Gilles, The volume of convex bodies and Banach space geometry, Cambridge Tracts in Mathematics, xvi+250 pp. (1989), Cambridge University Press, Cambridge · Zbl 0698.46008 · doi:10.1017/CBO9780511662454
[133] Pisier, Gilles, Handbook of the geometry of Banach spaces, Vol. 2. Operator spaces, 1425-1458 (2003), North-Holland, Amsterdam · Zbl 1041.46042 · doi:10.1016/S1874-5849(03)80040-2
[134] Pisier, Gilles, Martingales in Banach spaces, Cambridge Studies in Advanced Mathematics, xxviii+561 pp. (2016), Cambridge University Press, Cambridge · Zbl 1382.46002
[135] de Pagter, B., \(C(K)\)-representations and \(R\)-boundedness, J. Lond. Math. Soc. (2), 498-512 (2007) · Zbl 1138.46035 · doi:10.1112/jlms/jdm072
[136] Pr\"{u}ss, Jan, On operators with bounded imaginary powers in Banach spaces, Math. Z., 429-452 (1990) · Zbl 0665.47015 · doi:10.1007/BF02570748
[137] Rubio de Francia, Jos\'{e} L., Harmonic analysis. Weighted norm inequalities and vector valued inequalities, Lecture Notes in Math., 86-101 (1981), Springer, Berlin-New York · Zbl 0491.42019
[138] Rubio de Francia, Jos\'{e} L., Probability and Banach spaces. Martingale and integral transforms of Banach space valued functions, Lecture Notes in Math., 195-222 (1985), Springer, Berlin · Zbl 0615.60041 · doi:10.1007/BFb0099115
[139] Rudin, Walter, Functional analysis, International Series in Pure and Applied Mathematics, xviii+424 pp. (1991), McGraw-Hill, Inc., New York · Zbl 0867.46001
[140] Seip, Kristian, On the connection between exponential bases and certain related sequences in \(L^2(-\pi ,\pi )\), J. Funct. Anal., 131-160 (1995) · Zbl 0872.46006 · doi:10.1006/jfan.1995.1066
[141] Simard, Arnaud, Factorization of sectorial operators with bounded \(H^\infty \)-functional calculus, Houston J. Math., 351-370 (1999) · Zbl 0973.47012
[142] Singer, Ivan, Bases in Banach spaces. I, Die Grundlehren der mathematischen Wissenschaften, Band 154, viii+668 pp. (1970), Springer-Verlag, New York-Berlin · Zbl 0198.16601
[143] de Sz. Nagy, B\'{e}la, On uniformly bounded linear transformations in Hilbert space, Acta Univ. Szeged. Sect. Sci. Math., 152-157 (1947) · Zbl 0029.30501
[144] Su\'{a}rez, Jes\'{u}s, Methods in Banach space theory. Interpolation of Banach spaces by the \(\gamma \)-method, London Math. Soc. Lecture Note Ser., 293-306 (2006), Cambridge Univ. Press, Cambridge · Zbl 1127.46014 · doi:10.1017/CBO9780511721366.015
[145] Su\'{a}rez, Jes\'{u}s, Addendum to “Interpolation of Banach spaces by the \(\gamma \)-method” [MR2326391], Extracta Math., 265-269 (2009) · Zbl 1203.46013
[146] Titchmarsh, E. C., Introduction to the theory of Fourier integrals, x+394 pp. (1986), Chelsea Publishing Co., New York
[147] Tomczak-Jaegermann, Nicole, Banach-Mazur distances and finite-dimensional operator ideals, Pitman Monographs and Surveys in Pure and Applied Mathematics, xii+395 pp. (1989), Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York · Zbl 0721.46004
[148] Venni, Alberto, Functional analysis and related topics, 1991 (Kyoto). A counterexample concerning imaginary powers of linear operators, Lecture Notes in Math., 381-387 (1993), Springer, Berlin · Zbl 0795.47007 · doi:10.1007/BFb0085493
[149] Veraar, Mark C., Randomized UMD Banach spaces and decoupling inequalities for stochastic integrals, Proc. Amer. Math. Soc., 1477-1486 (2007) · Zbl 1116.60024 · doi:10.1090/S0002-9939-06-08619-9
[150] Weis, Lutz, Evolution equations and their applications in physical and life sciences. A new approach to maximal \(L_p\)-regularity, Lecture Notes in Pure and Appl. Math., 195-214 (1998), Dekker, New York · Zbl 0981.35030
[151] Weis, Lutz, Operator-valued Fourier multiplier theorems and maximal \(L_p\)-regularity, Math. Ann., 735-758 (2001) · Zbl 0989.47025 · doi:10.1007/PL00004457
[152] Wittwer, Janine, A sharp estimate on the norm of the martingale transform, Math. Res. Lett., 1-12 (2000) · Zbl 0951.42008 · doi:10.4310/MRL.2000.v7.n1.a1
[153] Yaroslavtsev, Ivan S., Local characteristics and tangency of vector-valued martingales, Probab. Surv., 545-676 (2020) · Zbl 1459.60091 · doi:10.1214/19-PS337
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.