×

Quantitative affine approximation for UMD targets. (English) Zbl 1362.46008

Given \(X=\mathbb R^n\) with a norm \(\|\cdot\|_X\) and an infinite-dimensional Banach space \(Y\), the authors introduce the notion of modulus of \(L_p\) affine approximability, denoted by \(r_p^{X\to Y}(\varepsilon)\), as the supremum of all values \(r\geq 0\) such that for every Lipschitz function \(f:B_X\to Y\) there exist \(y\in X\) and \(\rho\geq r\) such that \(y+\rho B_X\subset B_X\) and there exist \(a\in Y\) and a linear operator \(T:X\to Y\) with \(\|T\|\leq 3 \|f\|_{\mathrm{Lip}}\) such that \[ \left(\frac{1}{\mathrm{vol}(x+\rho B_X)}\int_{y+\rho B_X}\|f(z)- (a+ Tz)\|^p \, dz\right)^{1/p}\leq \varepsilon \rho \|f\|_{\mathrm{Lip}}. \] This extends the case \(p=\infty\), denoted by \(r^{X\to Y}\), first introduced in a paper by S. Bates et al. [Geom. Funct. Anal. 9, No. 6, 1092–1127 (1999; Zbl 0954.46014)] and whose best known lower bounds (using the modulus of uniform convexity \(c(Y)\)) were obtained by S. Li and A. Naor [Isr. J. Math. 197, 107–129 (2013; Zbl 1291.46021)] who achieved the estimate \(r^{X\to Y}(\varepsilon)\geq e^{-(n/\varepsilon)^{c(Y)n}}\).
In the present paper, an asymptotically better lower estimate is obtained, provided that \(Y\) is assumed to be a UMD space. Calling \(\beta(Y)\) the best constant appearing in the UMD condition for square-integrable \(Y\)-valued martingales, the precise statement gives that there exist \(\kappa, C\geq 1\) such that for every \(\beta\geq 2\) and every UMD space \(Y\) satisfying \(\beta\geq \beta(Y)\) one has \(r_p^{X\to Y}(\varepsilon)\geq \exp{(-(\beta n)^{C\kappa \beta}/\varepsilon^{\kappa \beta}})\).
The use of this modulus of \(L_p\) affine approximability for \(p<\infty\) allows the authors to get some improvement for the lower bound in the case \(p=\infty\), and to deal with methods such as Littlewood-Paley theory and complex interpolation that are at their disposal in this case. As a consequence of their improvement, they also obtain a bound on J. Bourgain’s discretization modulus in the case of UMD spaces (see [Lect. Notes Math. 1267, 157–167 (1987; Zbl 0633.46018)]). The paper leaves a number of interesting open questions concerning the geometry of Banach spaces and the asymptotics of this modulus.

MSC:

46B06 Asymptotic theory of Banach spaces
46B09 Probabilistic methods in Banach space theory

References:

[1] D. J. Aldous. Unconditional bases and martingales in L p (F). Math. Proc. Cambridge Philos. Soc., 85(1):117-123, 1979. 31 · Zbl 0389.46027
[2] J. Azzam and R. Schul. A quantitative metric differentiation theorem. Proc. Amer. Math. Soc., 142(4):1351-1357, 2014. 5 · Zbl 1317.26015
[3] R. Bañuelos and K. Bogdan. Lévy processes and Fourier multipliers. J. Funct. Anal., 250(1):197-213, 2007. 27 · Zbl 1123.42002
[4] R. Bañuelos and P. J. Méndez-Hernández. Space-time Brownian motion and the Beurling-Ahlfors transform. Indiana Univ. Math. J., 52(4):981-990, 2003. 21 · Zbl 1080.60043
[5] F. Barthe, O. Guédon, S. Mendelson, and A. Naor. A probabilistic approach to the geometry of the l n p -ball. Ann. Probab., 33(2):480-513, 2005. 8 · Zbl 1071.60010
[6] S. Bates, W. Johnson, J. Lindenstrauss, D. Preiss, and G. Schechtman. Affine approximation of Lipschitz functions and nonlinear quotients. Geometric and Functional Analysis, 9:1092-1127, 1999. 3, 4, 5, 6 · Zbl 0954.46014
[7] Y. Benyamini. The uniform classification of Banach spaces. In Texas functional analysis seminar 1984-1985 (Austin, Tex.), Longhorn Notes, pages 15-38. Univ. Texas Press, Austin, TX, 1985. 4
[8] Y. Benyamini and J. Lindenstrauss. Geometric nonlinear functional analysis. Vol. 1, volume 48 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 2000. 4 · Zbl 0946.46002
[9] J. Bergh and J. Löfström. Interpolation spaces. An introduction. Springer-Verlag, Berlin-New York, 1976. Grundlehren der Mathematischen Wissenschaften, No. 223. 33, 37, 41 · Zbl 0344.46071
[10] E. Berkson and T. A. Gillespie. Spectral decompositions and harmonic analysis on UMD spaces. Studia Math., 112(1):13-49, 1994. 20 · Zbl 0823.42004
[11] J. Bourgain. Some remarks on Banach spaces in which martingale difference sequences are unconditional. Ark. Mat., 21(2):163-168, 1983. 6 · Zbl 0533.46008
[12] J. Bourgain. Vector-valued singular integrals and the H 1 -BMO duality. In Probability theory and harmonic analysis (Cleveland, Ohio, 1983), volume 98 of Monogr. Textbooks Pure Appl. Math., pages 1-19. Dekker, New York, 1986. 20, 29 · Zbl 0602.42015
[13] J. Bourgain. Remarks on the extension of Lipschitz maps defined on discrete sets and uniform homeomorphisms. In Geometrical aspects of functional analysis (1985/86), volume 1267 of Lecture Notes in Math., pages 157-167. Springer, Berlin, 1987. 2, 4, 42 · Zbl 0633.46018
[14] D. Burkholder. Martingales and singular integrals in Banach spaces. In Handbook of the geometry of Banach spaces, volume 1, pages 233-269. 2001. 3 · Zbl 1029.46007
[15] D. L. Burkholder. A geometric condition that implies the existence of certain singular integrals of Banach-space-valued functions. In Conference on harmonic analysis in honor of Antoni Zygmund, Vol. I, II (Chicago, Ill., 1981), Wadsworth Math. Ser., pages 270-286. Wadsworth, Belmont, CA, 1983. 36
[16] D. L. Burkholder. Boundary value problems and sharp inequalities for martingale transforms. Ann. Probab., 12(3):647-702, 1984. 27 · Zbl 0556.60021
[17] D. L. Burkholder. Martingales and Fourier analysis in Banach spaces. In Probability and analysis (Varenna, 1985), volume 1206 of Lecture Notes in Math., pages 61-108. Springer, Berlin, 1986. 19 · Zbl 0605.60049
[18] A.-P. Calderón. Intermediate spaces and interpolation, the complex method. Studia Math., 24:113-190, 1964. 41 · Zbl 0204.13703
[19] J. Cheeger. Quantitative differentiation: a general formulation. Comm. Pure Appl. Math., 65(12):1641-1670, 2012. 4 · Zbl 1258.30027
[20] J. Cheeger, B. Kleiner, and A. Naor. Compression bounds for Lipschitz maps from the Heisenberg group to L 1 . Acta Math., 207(2):291-373, 2011. 4 · Zbl 1247.46020
[21] P. Clément, B. de Pagter, F. A. Sukochev, and H. Witvliet. Schauder decomposition and multiplier theorems. Studia Math., 138(2):135-163, 2000. 20 · Zbl 0955.46004
[22] G. David and S. Semmes. Singular integrals and rectifiable sets in R n : Beyond Lipschitz graphs. Astérisque, (193):152, 1991. 5 · Zbl 0743.49018
[23] G. David and S. Semmes. Analysis of and on uniformly rectifiable sets, volume 38 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 1993. 5 · Zbl 0832.42008
[24] G. David and S. Semmes. Regular mappings between dimensions. Publ. Mat., 44(2):369-417, 2000. 5 · Zbl 1041.42010
[25] L. Deleaval, O. Guédon, and B. Maurey. Dimension free bounds for the Hardy-Littlewood maximal operator associated to convex sets. Preprint, available at http://arxiv.org/abs/1602.02015, 2016. 25
[26] J. Dorronsoro. A characterization of potential spaces. Proc. Amer. Math. Soc., 95(1):21-31, 1985. 4, 5, 9, 15, 42 · Zbl 0577.46035
[27] A. Eskin, D. Fisher, and K. Whyte. Coarse differentiation of quasi-isometries I: Spaces not quasi-isometric to Cayley graphs. Ann. of Math. (2), 176(1):221-260, 2012. 4 · Zbl 1264.22005
[28] W. Feller. An introduction to probability theory and its applications. Vol. II. Second edition. John Wiley & Sons Inc., New York, 1971. 31 · Zbl 0219.60003
[29] T. Figiel and G. Pisier. Séries aléatoires dans les espaces uniformément convexes ou uniformément lisses. C. R. Acad. Sci. Paris Sér. A, 279:611-614, 1974. 31 · Zbl 0326.46007
[30] T. Figiel and P. Wojtaszczyk. Special bases in function spaces. In Handbook of the geometry of Banach spaces, Vol. I, pages 561-597. North-Holland, Amsterdam, 2001. 20 · Zbl 1018.46007
[31] O. Friedland and O. Guédon. Random embedding of n p into N r . Math. Ann., 350(4):953-972, 2011. · Zbl 1229.46009
[32] D. J. H. Garling. Brownian motion and UMD-spaces. In Probability and Banach spaces (Zaragoza, 1985), volume 1221 of Lecture Notes in Math., pages 36-49. Springer, Berlin, 1986. 21, 36 · Zbl 0609.46009
[33] D. J. H. Garling. Random martingale transform inequalities. In Probability in Banach spaces 6 (Sandbjerg, 1986), volume 20 of Progr. Probab., pages 101-119. Birkhäuser Boston, Boston, MA, 1990. 19 · Zbl 0701.60003
[34] S. Geiss. A counterexample concerning the relation between decoupling constants and UMD-constants. Trans. Amer. Math. Soc., 351(4):1355-1375, 1999. 19 · Zbl 0910.46007
[35] O. Giladi, A. Naor, and G. Schechtman. Bourgain’s discretization theorem. Ann. Fac. Sci. Toulouse Math. (6), 21(4):817-837, 2012. 2, 4 · Zbl 1283.46015
[36] S. Guerre-Delabrière. Some remarks on complex powers of (−∆) and UMD spaces. Illinois J. Math., 35(3):401-407, 1991. 26 · Zbl 0703.47024
[37] R. F. Gundy and N. T. Varopoulos. Les transformations de Riesz et les intégrales stochastiques. C. R. Acad. Sci. Paris Sér. A-B, 289(1):A13-A16, 1979. 21 · Zbl 0413.60003
[38] Y.-S. Han and Y. Meyer. A characterization of Hilbert spaces and the vector-valued Littlewood-Paley theorem. Methods Appl. Anal., 3(2):228-234, 1996. 39 · Zbl 0892.46034
[39] T. Hytönen and A. Naor. Heat flow and quantitative differentiation. Preprint available at https: //arxiv.org/abs/1608.01915, 2016. 42
[40] T. Hytönen, J. van Neerven, M. Veraar, and L. Weis. Analysis in Banach spaces. Vol. I. Mono-graph in preparation, draft available at http://fa.its.tudelft.nl/ neerven/ABS/volume1_
[41] Hytonen_Neerven_Veraar_Weis.pdf, 2015. 29
[42] T. P. Hytönen. Aspects of probabilistic Littlewood-Paley theory in Banach spaces. In Banach spaces and their applications in analysis, pages 343-355. Walter de Gruyter, Berlin, 2007. 21, 26
[43] T. P. Hytönen. Littlewood-Paley-Stein theory for semigroups in UMD spaces. Rev. Mat. Iberoam., 23(3):973-1009, 2007. 21 · Zbl 1213.42012
[44] T. P. Hytönen. On the norm of the Beurling-Ahlfors operator in several dimensions. Canad. Math. Bull., 54(1):113-125, 2011. 21 · Zbl 1213.42042
[45] T. Iwaniec and G. Martin. Riesz transforms and related singular integrals. J. Reine Angew. Math., 473:25-57, 1996. 35 · Zbl 0847.42015
[46] F. John. Extremum problems with inequalities as subsidiary conditions. In Studies and essays presented to R. Courant on his 60th birthday, pages 187-204. Interscience Publishers, Inc., 1948. 6 · Zbl 0034.10503
[47] W. B. Johnson, J. Lindenstrauss, and G. Schechtman. Banach spaces determined by their uniform structures. Geom. Funct. Anal., 6(3):430-470, 1996. 4 · Zbl 0864.46008
[48] W. B. Johnson and G. Schechtman. Embedding l m p into l n 1 . Acta Math., 149(1-2):71-85, 1982. 32 · Zbl 0522.46015
[49] P. W. Jones. Square functions, Cauchy integrals, analytic capacity, and harmonic measure. In Harmonic analysis and partial differential equations (El Escorial, 1987), volume 1384 of Lecture Notes in Math., pages 24-68. Springer, Berlin, 1989. 5 · Zbl 0675.30029
[50] P. W. Jones. Rectifiable sets and the traveling salesman problem. Invent. Math., 102(1):1-15, 1990. 5 · Zbl 0731.30018
[51] J.-P. Kahane. Some random series of functions, volume 5 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, second edition, 1985. 20 · Zbl 0571.60002
[52] I. Karatzas and S. E. Shreve. Brownian motion and stochastic calculus, volume 113 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition, 1991. 21, 22, 24 · Zbl 0734.60060
[53] S. Kwapień. Isomorphic characterizations of inner product spaces by orthogonal series with vector valued coefficients. Studia Math., 44:583-595, 1972. Collection of articles honoring the completion by Antoni Zygmund of 50 years of scientific activity, VI. 39 · Zbl 0256.46024
[54] M. Ledoux and M. Talagrand. Probability in Banach spaces, volume 23 of Ergebnisse der Mathe-matik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. · Zbl 0662.60008
[55] Springer-Verlag, Berlin, 1991. Isoperimetry and processes. 19
[56] J. R. Lee and P. Raghavendra. Coarse differentiation and multi-flows in planar graphs. Discrete Comput. Geom., 43(2):346-362, 2010. 4 · Zbl 1213.05056
[57] S. Li. Coarse differentiation and quantitative nonembeddability for Carnot groups. J. Funct. Anal., 266(7):4616-4704, 2014. 4 · Zbl 1311.46021
[58] S. Li. Markov convexity and nonembeddability of the Heisenberg group. To appear in Ann. Inst. Fourier. Available at http://arxiv.org/abs/1404.6751, 2014. 4
[59] S. Li and A. Naor. Discretization and affine approximation in high dimensions. Israel J. Math., 197(1):107-129, 2013. 2, 3, 4, 6, 12 · Zbl 1291.46021
[60] M. B. Marcus and G. Pisier. Characterizations of almost surely continuous p-stable random Fourier series and strongly stationary processes. Acta Math., 152(3-4):245-301, 1984. 32 · Zbl 0547.60047
[61] T. Martínez, J. L. Torrea, and Q. Xu. Vector-valued Littlewood-Paley-Stein theory for semigroups. Adv. Math., 203(2):430-475, 2006. 6, 20 · Zbl 1111.46008
[62] J. Matoušek. On embedding trees into uniformly convex Banach spaces. Israel J. Math., 114:221-237, 1999. 4 · Zbl 0948.46011
[63] B. Maurey. Système de Haar. In Séminaire Maurey-Schwartz 1974-1975: Espaces Lsup p, applica-tions radonifiantes et géométrie des espaces de Banach, Exp. Nos. I et II, pages 26 pp. (erratum, p. · Zbl 0308.46029
[64] Centre Math., École Polytech., Paris, 1975. 31
[65] B. Maurey. Type, cotype and K-convexity. In Handbook of the geometry of Banach spaces, Vol. 2, pages 1299-1332. North-Holland, Amsterdam, 2003. 31 · Zbl 1013.46001
[66] B. Maurey and G. Pisier. Séries de variables aléatoires vectorielles indépendantes et propriétés géométriques des espaces de Banach. Studia Math., 58(1):45-90, 1976. 31 · Zbl 0344.47014
[67] M. Mendel and A. Naor. Markov convexity and local rigidity of distorted metrics. J. Eur. Math. Soc. (JEMS), 15(1):287-337, 2013. 4 · Zbl 1266.46016
[68] A. Naor. Geometric problems in non-linear functional analysis. Master’s thesis, Hebrew University, 1998. 4
[69] G. Pisier. Martingales with values in uniformly convex spaces. Israel J. Math., 20(3-4):326-350, 1975. 31 · Zbl 0344.46030
[70] G. Pisier. Un exemple concernant la super-réflexivité. In Séminaire Maurey-Schwartz 1974-1975: Espaces L p applications radonifiantes et géométrie des espaces de Banach, Annexe No. 2, page 12. Centre Math. École Polytech., Paris, 1975. 3, 6 · Zbl 0299.00024
[71] G. Pisier. On the dimension of the l n p -subspaces of Banach spaces, for 1 p < 2. Trans. Amer. Math. Soc., 276(1):201-211, 1983. 31, 32 · Zbl 0509.46016
[72] Y. Qiu. On the UMD constants for a class of iterated L p (L q ) spaces. J. Funct. Anal., 263(8):2409-2429, 2012. 6 · Zbl 1260.46006
[73] G.-C. Rota. An “Alternierende Verfahren” for general positive operators. Bull. Amer. Math. Soc., 68:95-102, 1962. 20 · Zbl 0116.10403
[74] E. M. Stein. Interpolation of linear operators. Trans. Amer. Math. Soc., 83:482-492, 1956. 41 · Zbl 0072.32402
[75] E. M. Stein. Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, N.J., 1970. 5, 11, 36 · Zbl 0207.13501
[76] E. M. Stein. Topics in harmonic analysis related to the Littlewood-Paley theory. Annals of Mathematics Studies, No. 63. Princeton University Press, Princeton, N.J., 1970. 20 · Zbl 0193.10502
[77] E. M. Stein and G. Weiss. Interpolation of operators with change of measures. Trans. Amer. Math. Soc., 87:159-172, 1958. 41 · Zbl 0083.34301
[78] H. Triebel. Theory of function spaces. II, volume 84 of Monographs in Mathematics. Birkhäuser Verlag, Basel, 1992. 15 · Zbl 0763.46025
[79] J. M. A. M. van Neerven. Stochastic evolution equations. Lecture notes of the Internet Sem-inar 2007/08 (version May 07, 2010). Available at http://fa.its.tudelft.nl/ neerven/ publications/papers/ISEM.pdf, 2010. 21, 22
[80] J. M. A. M. van Neerven, M. C. Veraar, and L. Weis. Stochastic integration in UMD Banach spaces. Ann. Probab., 35(4):1438-1478, 2007. 21 · Zbl 1121.60060
[81] J. M. A. M. van Neerven and L. Weis. Stochastic integration of functions with values in a Banach space. Studia Math., 166(2):131-170, 2005. 21 · Zbl 1073.60059
[82] M. Veraar. Embedding results for γ-spaces. In Recent trends in analysis. Proceedings of the conference in honor of Nikolai Nikolski on the occasion of his 70th birthday, Bordeaux, France, August 31 -September 2, 2011, pages 209-219. Bucharest: The Theta Foundation, 2013 · Zbl 1299.46034
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.