×

A characterization of operator algebras. (English) Zbl 0714.46043

An operator space is a subspace of the algebra B(H) of all bounded linear operators on a Hilbert space H. A matricial operator algebra is a subalgebra of B(H). The norms \(\| \|_ n\) on \(M_ n(B(H))\), which come from the identifications \(M_ n(B(H))=B(H^ n)\), induces norms on \(M_ n(X)\) for every subspace X of B(H).
An \(L^{\infty}\)-matricially normed space is a vector space X with a norm \(\| \|_ n\) on \(M_ n(X)\) (n\(\in {\mathbb{N}})\) such that \(\| \alpha x\beta \|_ n\leq \| \alpha \| \| x\|_ n\| \beta \|\) \((\alpha,\beta \in M_ n({\mathbb{C}})\), \(x\in M_ n(X))\) and \(\| x\oplus y\|_{n+m}=\max \{\| x\|_ n,\| y\|_ m\}\) \((x\in M_ n(X)\), \(y\in M_ m(X))\). If there is a bilinear map m: \(X\times X\to X\) such that \(\| m_ n(x,y)\|_ n\leq \| x\|_ n\| y\|_ n\) \((x,y\in M_ n(X))\) it is called a \(L^{\infty}\)-normed pseudo algebra. If \(m(m(x,y),z)=m(x,m(y,z))\) (x,y,z\(\in X)\) we omit the word “pseudo”.
The main result of the papers states that a unital \(L^{\infty}\)-normed pseudo-algebra A is completely isometrically isomorphic to a unital metricial operator algebra B, in the sense that there exists an algebra isomorphism T: \(A\to B\) such that \(\| T\|_{cb}=\sup \| T_ n\| \leq 1\) and \(\| T^{-1}\|_{cb}=\sup \| T_ n^{- 1}\| \leq 1,\) where \(T_ n: M_ n(A)\to M_ n(B)\) is defined by \(T_ n[a_{ik}]=[Ta_{ik}].\) One interesting point of the result is that the multiplication on A need not be assumed to be associative. In particular, the quotient of an operator algebra by a closed two-sided ideal is again an operator algebra up to complete isometric isomorphism.
Reviewer: G.Corach

MSC:

46L05 General theory of \(C^*\)-algebras
Full Text: DOI

References:

[1] Arveson, W. B., Subalgebras of \(C^∗\)-algebras, II, Acta Math., 128, 271-308 (1972) · Zbl 0245.46098
[2] Blecher, D. P., Geometry of the Tensor Product of \(C^∗\)-Algebras, (Ph.D. thesis (May 1988), University of Edinburgh) · Zbl 0668.46027
[3] Bonsall, F. F.; Duncan, J., Numerical Ranges of Operators on Normed Spaces and Elements of Normed Algebras (1971), Cambridge Univ. Press: Cambridge Univ. Press London/New York · Zbl 0207.44802
[4] Carne, T. K., Not all H′-algebras are operator algebras, (Math. Proc. Cambridge Philos. Soc., 85 (1979)), 243-249 · Zbl 0409.46066
[5] Carne, T. K., “Operator Algebras,” Exposé No. 15, (Séminaire d’Analyse Fonctionelle (1979-1980), Ecole Polytechnique: Ecole Polytechnique Palaiseau) · Zbl 0445.46043
[6] Choi, M. D.; Effros, E. G., Injectivity and operator spaces, J. Funct. Anal., 24, 156-209 (1977) · Zbl 0341.46049
[7] Christensen, E.; Effros, E. G.; Sinclair, A. M., Completely bounded maps and \(C^∗\)-algebraic cohomology, Invent. Math., 90, 279-296 (1987) · Zbl 0646.46052
[8] Christensen, E.; Sinclair, A. M., Representations of completely bounded multilinear operators, J. Funct. Anal., 72, 151-181 (1987) · Zbl 0622.46040
[9] Conway, J. B., A Course in Functional Analysis, (Graduate Texts in Math., Vol. 96 (1985), Springer-Verlag: Springer-Verlag New York) · Zbl 0706.46003
[10] Effros, E. G.; Kishimoto, A., Module maps and Hochschild-Johnson cohomology, Indiana Univ. Math. J., 36, 257-276 (1987) · Zbl 0635.46062
[11] Effros, E. G.; Ruan, Z.-J, On matricially normed spaces, Pacific J. Math., 132, 243-264 (1988) · Zbl 0686.46012
[13] Moore, R. T., Hermitian functionals on Banach algebras and duality characterizations of \(C^∗\)-algebras, Trans. Amer. Math. Soc., 162, 253-266 (1971) · Zbl 0213.14002
[14] Paulsen, V. I., Completely bounded maps on \(C^∗\)-algebras and invariant operator ranges, (Proc. Amer. Math. Soc., 86 (1982)), 91-96 · Zbl 0554.46028
[15] Paulsen, V. I., Every completely polynomially bounded operator is similar to a contraction, J. Funct. Anal., 55, 1-17 (1984) · Zbl 0557.46035
[16] Paulsen, V. I., Completely Bounded Maps and Dilations, (Pitman Research Notes in Math. (1986), Longman: Longman London) · Zbl 0614.47006
[17] Paulsen, V. I.; Power, S. C.; Smith, R. R., Schur products and matrix completions, J. Funct. Anal., 85, 151-178 (1989) · Zbl 0672.15008
[18] Paulsen, V. I.; Smith, R. R., Multilinear maps and tensor norms on operator systems, J. Funct. Anal., 73, 258-276 (1987) · Zbl 0644.46037
[19] Ruan, Z.-J, Subspaces of \(C^∗\)-algebras, J. Funct. Anal., 76, 217-230 (1988) · Zbl 0646.46055
[20] Ruan, Z.-J, Injectivity and operator spaces, Trans. Amer. Math. Soc., 315, 89-104 (1989) · Zbl 0669.46029
[21] Stinespring, W. F., Positive functions on \(C^∗\)-algebras, (Proc. Amer. Math. Soc., 6 (1955)), 211-216 · Zbl 0064.36703
[22] Smith, R. R.; Ward, J. D., Matrix ranges for Hilbert space operators, Amer. J. Math., 102, 1031-1081 (1980) · Zbl 0456.47010
[23] Takesaki, M., Theory of Operator Algebras, I (1979), Springer-Verlag: Springer-Verlag Berlin · Zbl 0990.46034
[24] Tonge, A. M., “Sur les algèbres de Banach et les opérateurs \(p\)-sommant,” Exposé No. 13, (Séminaire Maurey-Schwarz (1975-1976)) · Zbl 0372.46052
[25] Tonge, A. M., Banach algebras and absolutely summing operators, (Math. Proc. Cambridge Philos. Soc., 80 (1976)), 465-473 · Zbl 0338.46040
[26] Varopoulos, N. Th, On an inequality of von Neumann and an application of the metric theory of tensor products to operator theory, J. Funct. Anal., 16, 83-100 (1974) · Zbl 0288.47006
[27] Varopoulos, N. Th, A theorem on operator algebras, Math. Scand., 37, 173-182 (1975) · Zbl 0337.46041
[28] Wittstock, G., Ein operatorwertiger Hahn-Banach Satz, J. Funct. Anal., 40, 127-150 (1981) · Zbl 0495.46005
[29] Wermer, J., Quotient Algebras of Uniform Algebras, (Symposium on function algebras and rational approximation (1969), Univ. of Michigan) · Zbl 0421.46046
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.