×

A counterexample concerning the relation between decoupling constants and \(\operatorname{UMD}\)-constants. (English) Zbl 0910.46007

Summary: For Banach spaces \(X\) and \(Y\) and a bounded linear operator \(T:X \rightarrow Y\) we let \(\rho(T):=\inf c\) such that \[ \Biggl(AV_{\theta_l = \pm 1} \biggl\| \sum_{l=1}^\infty \theta_l \biggl( \sum_{k=\tau_{l-1}+1}^{\tau_l} h_k T x_k \biggr)\biggr\| _{L_2^Y}^2 \Biggr)^{\frac{1}{2}} \leq c \biggl\| \sum_{k=1}^\infty h_k x_k \biggr\| _{L_2^X} \] for all finitely supported \((x_k)_{k=1}^\infty \subset X\) and all \(0 = \tau_0 < \tau_1 < \cdots\), where \((h_k)_{k=1}^\infty \subset L_1[0,1)\) is the sequence of Haar functions. We construct an operator \(T:X \rightarrow X\), where \(X\) is superreflexive and of type 2, with \(\rho(T)<\infty\) such that there is no constant \(c>0\) with \[ \sup_{\theta_k = \pm 1} \biggl\| \sum_{k=1}^\infty \theta_k h_k T x_k \biggr\| _{L_2^X} \leq c \biggl\| \sum_{k=1}^\infty h_k x_k \biggr\| _{L_2^X}. \]
In particular it turns out that the decoupling constants \(\rho(I_X)\), where \(I_X\) is the identity of a Banach space \(X\), fail to be equivalent up to absolute multiplicative constants to the usual \(\text{UMD}\)-constants. As a by-product we extend the characterization of the non-superreflexive Banach spaces by the finite tree property using lower 2-estimates of sums of martingale differences.

MSC:

46B07 Local theory of Banach spaces
60G42 Martingales with discrete parameter
46B70 Interpolation between normed linear spaces
60B11 Probability theory on linear topological spaces
46M35 Abstract interpolation of topological vector spaces
Full Text: DOI

References:

[1] D. J. Aldous, Unconditional bases and martingales in \?_{\?}(\?), Math. Proc. Cambridge Philos. Soc. 85 (1979), no. 1, 117 – 123. · Zbl 0389.46027 · doi:10.1017/S0305004100055559
[2] Nakhlé Asmar and Stephen Montgomery-Smith, On the distribution of Sidon series, Ark. Mat. 31 (1993), no. 1, 13 – 26. · Zbl 0836.43011 · doi:10.1007/BF02559495
[3] Bernard Beauzamy, Introduction to Banach spaces and their geometry, 2nd ed., North-Holland Mathematics Studies, vol. 68, North-Holland Publishing Co., Amsterdam, 1985. Notas de Matemática [Mathematical Notes], 86. · Zbl 0585.46009
[4] Jöran Bergh and Jörgen Löfström, Interpolation spaces. An introduction, Springer-Verlag, Berlin-New York, 1976. Grundlehren der Mathematischen Wissenschaften, No. 223. · Zbl 0344.46071
[5] Jöran Bergh and Jaak Peetre, On the spaces \?_{\?} (0&lt;\?\le \infty ), Boll. Un. Mat. Ital. (4) 10 (1974), 632 – 648 (English, with Italian summary). · Zbl 0308.46032
[6] J. Bourgain, Some remarks on Banach spaces in which martingale difference sequences are unconditional, Ark. Mat. 21 (1983), no. 2, 163 – 168. · Zbl 0533.46008 · doi:10.1007/BF02384306
[7] Donald L. Burkholder, Martingales and Fourier analysis in Banach spaces, Probability and analysis (Varenna, 1985) Lecture Notes in Math., vol. 1206, Springer, Berlin, 1986, pp. 61 – 108. · Zbl 0605.60049 · doi:10.1007/BFb0076300
[8] Donald L. Burkholder, Explorations in martingale theory and its applications, École d’Été de Probabilités de Saint-Flour XIX — 1989, Lecture Notes in Math., vol. 1464, Springer, Berlin, 1991, pp. 1 – 66. · Zbl 0771.60033 · doi:10.1007/BFb0085167
[9] D. L. Burkholder, B. J. Davis, and R. F. Gundy, Integral inequalities for convex functions of operators on martingales, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971) Univ. California Press, Berkeley, Calif., 1972, pp. 223 – 240. · Zbl 0253.60056
[10] D. L. Burkholder and R. F. Gundy, Extrapolation and interpolation of quasi-linear operators on martingales, Acta Math. 124 (1970), 249 – 304. · Zbl 0223.60021 · doi:10.1007/BF02394573
[11] D. J. H. Garling, Random martingale transform inequalities, Probability in Banach spaces 6 (Sandbjerg, 1986) Progr. Probab., vol. 20, Birkhäuser Boston, Boston, MA, 1990, pp. 101 – 119.
[12] Adriano M. Garsia, Martingale inequalities: Seminar notes on recent progress, W. A. Benjamin, Inc., Reading, Mass.-London-Amsterdam, 1973. Mathematics Lecture Notes Series. · Zbl 0284.60046
[13] Stefan Geiss, \?\?\?_{\?}-spaces and applications to extrapolation theory, Studia Math. 122 (1997), no. 3, 235 – 274. · Zbl 0874.46011
[14] Paweł Hitczenko, Upper bounds for the \?_{\?}-norms of martingales, Probab. Theory Related Fields 86 (1990), no. 2, 225 – 238. · Zbl 0677.60017 · doi:10.1007/BF01474643
[15] Paweł Hitczenko, Domination inequality for martingale transforms of a Rademacher sequence, Israel J. Math. 84 (1993), no. 1-2, 161 – 178. · Zbl 0781.60037 · doi:10.1007/BF02761698
[16] Robert C. James, Some self-dual properties of normed linear spaces, Symposium on Infinite-Dimensional Topology (Louisiana State Univ., Baton Rouge, La., 1967) Princeton Univ. Press, Princeton, N.J., 1972, pp. 159 – 175. Ann. of Math. Studies, No. 69.
[17] Robert C. James, Super-reflexive Banach spaces, Canad. J. Math. 24 (1972), 896 – 904. · Zbl 0222.46009 · doi:10.4153/CJM-1972-089-7
[18] Michel Ledoux and Michel Talagrand, Probability in Banach spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 23, Springer-Verlag, Berlin, 1991. Isoperimetry and processes. · Zbl 0748.60004
[19] Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. I, Springer-Verlag, Berlin-New York, 1977. Sequence spaces; Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 92. Joram Lindenstrauss and Lior Tzafriri, Classical Banach spaces. II, Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 97, Springer-Verlag, Berlin-New York, 1979. Function spaces. · Zbl 0362.46013
[20] B. Maurey, Système de Haar, Séminaire Maurey-Schwartz 1974 – 1975: Espaces Lsup\?, applications radonifiantes et géométrie des espaces de Banach, Exp. Nos. I et II, Centre Math., École Polytech., Paris, 1975, pp. 26 pp. (erratum, p. 1) (French). · Zbl 0308.46030
[21] G. Pisier, Un exemple concernant la super-réflexivité, Séminaire Maurey-Schwartz 1974 – 1975: Espaces \?^{\?} applications radonifiantes et géométrie des espaces de Banach, Annexe No. 2, Centre Math. École Polytech., Paris, 1975, pp. 12 (French). · Zbl 0315.46022
[22] Gilles Pisier, Martingales with values in uniformly convex spaces, Israel J. Math. 20 (1975), no. 3-4, 326 – 350. · Zbl 0344.46030 · doi:10.1007/BF02760337
[23] Gilles Pisier and Quan Hua Xu, Random series in the real interpolation spaces between the spaces \?_{\?}, Geometrical aspects of functional analysis (1985/86), Lecture Notes in Math., vol. 1267, Springer, Berlin, 1987, pp. 185 – 209. · doi:10.1007/BFb0078146
[24] J. Wenzel. Personal communication.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.