×

Semigroups and resolvents of bounded variation imaginary powers and \(H^ \infty\) functional calculus. (English) Zbl 0779.47036

Summary: Let \(-A\) be a linear, injective operator, on a Banach space \(X\). We show that an \(H^ \infty\) functional calculus for \(A\) exists if and only if \(-A\) generates a bounded strongly continuous holomorphic semigroup of uniform weak bounded variation, if and only if \(A(z+A)^{-1}\) is of uniform weak bounded variation. This provides a sufficient condition for the imaginary powers of \(A\), \(\{A^{-is}\}_{s\in\mathbb{R}}\), to extend to a strongly continuous group of bounded operators; we also give similar necessary conditions.

MSC:

47D06 One-parameter semigroups and linear evolution equations
46H30 Functional calculus in topological algebras
47A60 Functional calculus for linear operators

References:

[1] Boyadzhiev, K.; deLaubenfels, R., H^∞-functional calculus for perturbations of generators of holomorphic semigroups, Houston J. Math., 17, 131-147 (1991) · Zbl 0738.47018
[2] Champeney, D. C., A Handbook of Fourier Transforms (1987), Cambridge: Cambridge University Press, Cambridge · Zbl 0632.42001
[3] Cioranescu, I.; Zsido, L., Analytic generators for one-parameter groups, Tohoku Math. J., 28, 327-362 (1976) · Zbl 0361.47014 · doi:10.2748/tmj/1178240775
[4] Davies, E. B., One-Parameter Semigroups (1980), London: Academic Press, London · Zbl 0457.47030
[5] Dore, G.; Venni, A., On the closedness of the sum of two closed operators, Math. Z., 196, 189-201 (1987) · Zbl 0615.47002 · doi:10.1007/BF01163654
[6] Dore, G.; Venni, A., Some results about complex powers of closed operators, J. Math. Anal. and Appl., 149, 124-136 (1990) · Zbl 0712.47003 · doi:10.1016/0022-247X(90)90290-V
[7] Dunford, N.; Schwartz, J. T., Linear Operators (1958), New York: Interscience, New York · Zbl 0084.10402
[8] Duong, X. T., H^∞ functional calculus of elliptic operators with C^∞ coefficients on L^p spaces of smooth domains, J. Austral. Math. Soc. (Ser. A), 48, 113-123 (1990) · Zbl 0708.35029 · doi:10.1017/S1446788700035242
[9] Duong, X. T., H_∞ functional calculus of second order elliptic PDE on L^p spaces, Miniconference on Operators in Analysis, Proc. of the Center for Math. Analysis, ANU, Canberra, 24, 91-102 (1989) · Zbl 0709.47015
[10] Fattorini, H. O., The Abstract Cauchy Problem (1983), Reading, Mass.: Addison Wesley, Reading, Mass. · Zbl 0493.34005
[11] Fisher, M. J., Imaginary powers of the indefinite integral, Amer. J. Math., 93, 317-328 (1971) · Zbl 0219.47039 · doi:10.2307/2373379
[12] Goldstein, J. A., “Semigroups of Operators and Applications,” Oxford, New York, 1985. · Zbl 0592.47034
[13] Hille, E. and R. S. Phillips, “Functional Analysis and Semigroups,” Colloq. Publ. Amer. Math Soc. 1957. · Zbl 0078.10004
[14] Hughes, R. J., Semigroups of unbounded linear operators in Banach space, Trans. Amer. Math. Soc., 230, 113-145 (1977) · Zbl 0359.47020 · doi:10.2307/1997714
[15] Hughes, R. J.; Kantorovitz, S., Boundary values of holomorphic semigroups of unbounded operators and similarity of certain perturbations, J. Funct. Anal., 29, 253-273 (1978) · Zbl 0395.47029 · doi:10.1016/0022-1236(78)90008-3
[16] Kalisch, G. K., On fractional integrals of purely imaginary order in L^p, Proc. Amer. Math. Soc., 18, 136-139 (1967) · Zbl 0144.36705 · doi:10.2307/2035241
[17] Kober, H., On a theorem of Schur and on fractional integrals of purely imaginary order, Trans. Amer. Math. Soc., 50, 160-174 (1941) · Zbl 0025.33901 · doi:10.2307/1989915
[18] Komatsu, H., Fractional powers of operators, Pac. J. Math., 19, 285-346 (1966) · Zbl 0154.16104
[19] Love, E. R., Fractional derivative of imaginary order, J. London Math. Soc., 3, 2, 241-259 (1971) · Zbl 0207.43902 · doi:10.1112/jlms/s2-3.2.241
[20] MacRobert, T. M., Functions of a Complex Variable (1962), London: Macmillan, London · JFM 46.0543.07
[21] Marschall, E., On the analytic generator of a group of operators, Indiana Univ. Math. J., 35, 289-309 (1986) · Zbl 0608.47048 · doi:10.1512/iumj.1986.35.35017
[22] McIntosh, A., Operators which have an H^∞ functional calculus, Miniconference on Operator Theory and PDE, Proc. of the Center for Math. Analysis, ANU, Canberra, 14, 210-231 (1986) · Zbl 0634.47016
[23] McIntosh, A. and A. Yagi,Operators of type ω without a bounded H^∞-functional calculus, Miniconference on Operators in Analysis 1989, Proc. of the Center for Math. Analysis, ANU, Canberra24 (1989).
[24] Nagel, R., One-parameter Semigroups of Positive Operators (1986), Berlin: Springer, Berlin · Zbl 0585.47030
[25] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equations (1983), New York: Springer, New York · Zbl 0516.47023
[26] Prüss, J.; Sohr, H., On operators with bounded imaginary powers in Banach spaces, Math. Z., 203, 429-452 (1990) · Zbl 0665.47015 · doi:10.1007/BF02570748
[27] Reed, M.; Simon, B., Methods of Mathematical (1975), New York: Academic Press, New York · Zbl 0308.47002
[28] Ricker, W., Spectral properties of the Laplace operator in L^p(R), Osaka J. Math., 25, 399-410 (1988) · Zbl 0706.47028
[29] Ross. B., (ed.) “Fractional Calculus and its Applications,” Lecture Notes in Math.457 (1975), Springer-Verlag. · Zbl 0293.00010
[30] van Casteren, J. A., “Generators of strongly continuous semigroups,” Research Notes in Math. 115, Pitman, 1985. · Zbl 0576.47023
[31] Yagi, A., Coincidence entre des espaces d’interpolation et domaines de puissances fractionnaires d’operateurs, C. R. Acad. Sci. Paris (Ser. I), 299, 173-176 (1984) · Zbl 0563.46042
[32] Yagi, A., Applications of the purely imaginary powers of operators in Hilbert spaces, J. Func. Anal., 73, 216-231 (1987) · Zbl 0621.47024 · doi:10.1016/0022-1236(87)90066-8
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.