×

Calculus of variations. Abstracts from the workshop held August 14–20, 2022. (English) Zbl 1520.00021

Summary: The Calculus of Variations is at the same time a classical subject, with long-standing open questions which have generated exciting discoveries in recent decades, and a modern subject in which new types of questions arise, driven by mathematical developments and emergent applications. It is also a subject with a very wide scope, touching on interrelated areas that include geometric variational problems, optimal transportation, geometric inequalities and domain optimization problems, elliptic regularity, geometric measure theory, harmonic analysis, physics, free boundary problems, etc. The workshop balances the traditional interests of past conferences with new emerging perspectives.

MSC:

00B05 Collections of abstracts of lectures
00B25 Proceedings of conferences of miscellaneous specific interest
49-06 Proceedings, conferences, collections, etc. pertaining to calculus of variations and optimal control
35R35 Free boundary problems for PDEs
53Cxx Global differential geometry
Full Text: DOI

References:

[1] W. K. Allard, On the first variation of a varifold, Ann. of Math. (2) 95 (1972), 417-491. · Zbl 0252.49028
[2] W. K. Allard, A characterization of the area integrand in Symposia Mathematica, Vol. XIV (Convegno di Teoria Geometrica dell’Integrazione e Varietà Minimali, INDAM, Rome, 1973), (1974), 424-444.
[3] W. K. Allard, An a priori estimate for the oscillation of the normal to a hypersurface whose first and second variation with respect to an elliptic integrand is controlled, Invent. Math. 73 (1983), 287-331. · Zbl 0526.49028
[4] F. J. Almgren Jr., The theory of varifolds, Mimeographed notes, Princeton University, (1965).
[5] G. De Philippis and A. De Rosa, The anisotropic Min-Max theory: Existence of anisotropic minimal and CMC surfaces, arXiv:2205.12931.
[6] G. De Philippis, A. De Rosa, and F. Ghiraldin, Rectifiability of varifolds with locally bounded first variation with respect to anisotropic surface energies, Comm. Pure Appl. Math. 71 (2018), 1123-1148. · Zbl 1396.49044
[7] G. De Philippis, A. De Rosa, and J. Hirsch, The Area Blow Up set for bounded mean curvature submanifolds with respect to elliptic surface energy functionals, Discrete Contin. Dyn. Syst. 39 (2019), 7031-7056. · Zbl 1431.49046
[8] J. T. Pitts, Existence and regularity of minimal surfaces on Riemannian manifolds, Math-ematical Notes, Princeton University Press, Princeton, N.J., (1981). · Zbl 0462.58003
[9] R. Schoen and L. Simon, Regularity of stable minimal hypersurfaces, Comm. Pure Appl. Math. 34 (1981), 741-797. · Zbl 0497.49034
[10] R. Schoen, L. Simon, and S. T. Yau, Curvature estimates for minimal hypersurfaces, Acta Math. 134 (1975), 275-288. · Zbl 0323.53039
[11] B. White, Existence of smooth embedded surfaces of prescribed genus that minimize para-metric even elliptic functionals on 3-manifolds, J. Differential Geom. 33 (1991), 413-443. · Zbl 0737.53009
[12] X. Zhou and J. J. Zhu, Min-max theory for constant mean curvature hypersurfaces, Invent. math. 218 (2019), 441-490. · Zbl 1432.53086
[13] K .A. Brakke, The Motion of a Surface by its Mean Curvature in Mathematical Notes, Princeton University Press, Princeton, NJ, 20 (1978). · Zbl 0386.53047
[14] L. Bronsard and F. Reitich, On three-phase boundary motion and the singular limit of a vector-valued Ginzburg-Landau equation, Arch. Rational Mech. Anal. 124 (1993), 355-379. · Zbl 0785.76085
[15] R. Chill, On the Lojasiewicz-Simon gradient inequality, J. Funct. Anal. 201 (2003), 572-601. · Zbl 1036.26015
[16] O. Chodosh and F. Schulze, Uniqueness of asymptotically conical tangent flows, Duke Math. J. 170 (2021), 3601-3657. · Zbl 1489.53123
[17] T. H. Colding and W. P. Minicozzi II, Uniqueness of blowups and Lojasiewicz inequalities, Ann. of Math. (2) 182 (2015), 221-285. · Zbl 1337.53082
[18] M. Gößwein, J. Menzel, and A. Pluda, On the Existence and Uniqueness of the Motion by Curvature of regular networks, To appear in Interfaces Free Bound., arXiv:2003.09962. · Zbl 1514.35448
[19] T. Ilmanen, A. Neves, and F. Schulze, On short time existence for the planar network flow, J. Differential Geom. 111 (2019), 39-89. · Zbl 1451.53121
[20] J. Lira, R. Mazzeo, A. Pluda, and M. Saez, Short-time existence for the network flow, To appear in Comm. Pure Appl. Math., arXiv:2101.04302.
[21] S. Lojasiewicz, Une propriété topologique des sous-ensembles analytiques réels, in Leś Equations aux Dérivées Partielles (Paris, 1962), Editions du Centre National de la Recherche Scientifique, Paris (1963), 87-89. · Zbl 0234.57007
[22] C. Mantegazza, M. Novaga and A. Pluda, Type-0 singularities in the network flow -Evo-lution of trees, to appear in J. Reine Angew. Math., arXiv:2207.03879. · Zbl 1541.53125
[23] C. Mantegazza, M. Novaga, A. Pluda, and F. Schulze, Evolution of network with multiple junctions, arXiv:1611.08254.
[24] C. Mantegazza, M. Novaga, and V. M. Tortorelli, Motion by curvature of planar networks, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 3 (2004), 235-324. · Zbl 1170.53313
[25] C. Mantegazza and M. Pozzetta, The Lojasiewicz-Simon inequality for the elastic flow, Calc. Var. Partial Differential Equations 60 (2021), Paper No. 56. · Zbl 1467.53106
[26] C. Mantegazza and M. Pozzetta, Asymptotic convergence of evolving hypersurfaces, to ap-pear in Rev. Mat. Iberoam., arXiv:2101.04044.
[27] R. Mazzeo and M. Saez, Self-similar expanding solutions for the planar network flow, in Sémin. Congr., Soc. Math. France, Paris 22, (2011), 159-173. · Zbl 1280.53062
[28] A. Pluda and M. Pozzetta, Lojasiewicz-Simon inequalities for minimal networks: stability and convergence, arXiv:2204.08921 (2022).
[29] A. Pluda and M. Pozzetta, On the uniqueness of nondegenerate blowups for the motion by curvature of networks, arXiv:2204.11675.
[30] L. Simon, Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems, Ann. of Math. (2) 118 (1983), 525-571. · Zbl 0549.35071
[31] N. Ansini, A. Braides, and V. Chiadò Piat, Gradient theory of phase transitions in composite media, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003), 265-296. · Zbl 1031.49021
[32] A. Braides and C. Zeppieri, Multiscale analysis of a prototypical model for the interaction between microstructure and surface energy, Interfaces Free Bound. 11 (2009), 61-118. · Zbl 1160.49010
[33] R. Cristoferi, I. Fonseca, and L. Ganedi, Homogenization and phase separation with space dependent wells -The subcritical case, Submitted, arXiv:2205.12893.
[34] R. Cristoferi, I. Fonseca, A. Hagerty, and C. Popovici, A homogenization result in the gradient theory of phase transitions, Interfaces Free Bound. 21 (2019), 367-408. · Zbl 1425.74389
[35] R. Cristoferi, I. Fonseca, A. Hagerty, and C. Popovici, Erratum to: A homogenization result in the gradient theory of phase transitions, Interfaces Free Bound. 22 (2020), 245-250. · Zbl 1443.74250
[36] R. Cristoferi and G. Gravina, Sharp interface limit of a multi-phase transitions model under nonisothermal conditions, Calc. Var. Partial Differential Equations 60 (2021), Paper No. 142. · Zbl 1484.49023
[37] A. Hagerty, A note on homogenization effects on phase transition problems, arXiv:1811.07357.
[38] P. Sengupta, B. Baird, and D. Holowka, Lipid rafts, fluid/fluid phase separation, and their relevance to plasma membrane structure and function, Semin Cell Dev Biol. 18(5) (2007), 583-590.
[39] M. Caselli, E. Florit, and J. Serra, Yau’s conjecture for nonlocal minimal surfaces, Forth-coming preprint.
[40] H. Chan, S. Dipierro, J. Serra, and E. Valdinoci, Nonlocal approximation of minimal sur-faces: optimal estimates from stability, Forthcoming preprint.
[41] O. Chodosh and C. Mantoulidis, Minimal surfaces and the Allen-Cahn equation on 3-manifolds: index, multiplicity, and curvature estimates, Ann. of Math. (2) 191 (2020), 213-328. · Zbl 1431.49045
[42] P. Gaspar and M. A. M. Guaraco, The Allen-Cahn equation on closed manifolds, Calc. Var. Partial Differential Equations 57 (2018), Paper No. 101. · Zbl 1396.53064
[43] M. A. M. Guaraco, Min-max for phase transitions and the existence of embedded minimal hypersurfaces, J. Differential Geom. 108 (2018), 91-133. · Zbl 1387.49060
[44] K. Irie, F. C. Marques, and A. Neves, Density of minimal hypersurfaces for generic metrics, Ann. of Math. (2) 187 (2018), 963-972. · Zbl 1387.53083
[45] J. T. Pitts, Existence and regularity of minimal surfaces on Riemannian manifolds in Math-ematical Notes, 27, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, (1981). · Zbl 0462.58003
[46] A. Song, Existence of infinitely many minimal hypersurfaces in closed manifolds, arXiv:1806.08816. · Zbl 1526.53013
[47] K. Wang and J.-C. Wei, Finite Morse index implies finite ends, Comm. Pure Appl. Math. 72 (2019),1044-1119. · Zbl 1418.35190
[48] R. Abbaschian, L. Abbaschian, and R. E. Reed-Hill, Physical Metallurgy Principles -SI Edition, Cengage Learning, (2009).
[49] A. Acharya and L. Tartar, On an equation from the theory of field dislocation mechanics, Boll. Unione Mat. Ital. 4 (2011), 409-444. · Zbl 1233.35186
[50] G. Alberti, S. Baldo, and G. Orlandi. Variational convergence for functionals of Ginzburg-Landau type Indiana Univ. Math. J. 54 (2005), 1411-1472. · Zbl 1160.35013
[51] P. M. Anderson, J. P. Hirth, and J. Lothe, Theory of Dislocations, Cambridge University Press, (2017). · Zbl 1365.82001
[52] R. Arora and A. Acharya. A unification of finite deformation J 2 von-Mises plasticity and quantitative dislocation mechanics J. Mech. Phys. Solids 143 (2020), 104050.
[53] P. Bonicatto, G. Del Nin, and F. Rindler, Transport of currents and geometric Rademacher-type theorems, arXiv:2207.03922.
[54] H. Brezis, J.-M. Coron, and E. H. Lieb, Harmonic maps with defects, Comm. Math. Phys. 107 (1986), 649-705. · Zbl 0608.58016
[55] T. Hudson and F. Rindler, Elasto-plastic evolution of crystal materials driven by dislocation flow, Math. Models Methods Appl. Sci. (M3AS), (2022), to appear, arXiv:2109.08749. · Zbl 1524.74087
[56] D. Hull and D. J. Bacon, Introduction to Dislocations, Elsevier, 5 edition, (2011).
[57] R. L. Jerrard and H. M. Soner, The Jacobian and the Ginzburg-Landau energy, Calc. Var. Partial Differential Equations 14 (2002), 151-191. · Zbl 1034.35025
[58] F. Rindler, Energetic solutions to rate-independent large-strain elasto-plastic evolutions driven by discrete dislocation flow, arXiv:2109.14416.
[59] F. Rindler, Space-time integral currents of bounded variation. arXiv:2109.12447. References · Zbl 1504.49060
[60] H. W. Alt, L. A. Caffarelli, and A. Friedman, Variational problems with two phases and their free boundaries, Trans. Amer. Math. Soc. 282 (1984), 431-461. · Zbl 0844.35137
[61] L. A. Caffarelli, D. Jerison, and C. Kenig, Global energy minimizers for free boundary problems and full regularity in three dimensions, Contemp. Math., 350 (2004), 83-97. · Zbl 1330.35545
[62] G. De Philippis, L. Spolaor, and B. Velichkov, Regularity of the free boundary for the two-phase Bernoulli problem, Invent. Math. 225 (2021), 347-394. · Zbl 1473.35664
[63] G. De Philippis, L. Spolaor, and B. Velichkov, (Quasi)-conformal methods in some 2-dimensional free-boundary problems, submitted (2021).
[64] D. De Silva and D. Jerison, A singular energy minimizing free boundary, J. Reine Angew. Math. 635 (2009), 1-21. · Zbl 1185.35050
[65] D. Jerison and O. Savin, Some remarks on stability of cones for the one-phase free boundary problem, Geom. Funct. Anal. 25 (2015), 1240-1257. · Zbl 1326.49078
[66] F. Alouges, T. Rivière, and S. Serfaty, Néel and cross-tie wall energies for planar micro-magnetic configurations, ESAIM Control Optim. Calc. Var. 8 (2002), 31-68. · Zbl 1092.82047
[67] L. Ambrosio, C. De Lellis, and C. Mantegazza, Line energies for gradient vector fields in the plane, Calc. Var. Partial Differential Equations 9 (1999), 327-355. · Zbl 0960.49013
[68] A. DeSimone, S. Müller, R. V. Kohn, and F. Otto, A compactness result in the gradient theory of phase transitions, Proc. Roy. Soc. Edinburgh Sect. A 131 (2001), 833-844. · Zbl 0986.49009
[69] P. E. Jabin, F. Otto, and B. Perthame, Line-energy Ginzburg-Landau models: zero-energy states, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 1 (2002), 187-202. · Zbl 1072.35051
[70] A. Lorent, A quantitative characterisation of functions with low Aviles Giga energy on convex domains, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 13 (2014), 1-66. · Zbl 1295.35143
[71] E. Marconi, Characterization of minimizers of Aviles-Giga functionals in special domains, Arch. Ration. Mech. Anal. 242 (2021), 1289-1316. · Zbl 1514.35016
[72] E. Marconi, Rectifiability of entropy defect measures in a micromagnetics model, Advances in Calculus of Variations (2021), 000010151520210012.
[73] E. Marconi, On the structure of weak solutions to scalar conservation laws with finite en-tropy production, Calc. Var. Partial Differential Equations 61 (2022), Paper No. 32. · Zbl 1486.35294
[74] T. Rivière and S. Serfaty, Limiting domain wall energy for a problem related to micromag-netics, Comm. Pure Appl. Math. 54 (2001), 294-338. · Zbl 1031.35142
[75] K. Astala and D. Faraco, Quasiregular mappings and Young measures, Proc. Roy. Soc. Edinburgh Sect. A 132 (2002), 1045-1056. · Zbl 1016.30016
[76] K. Astala, T. Iwaniec, and G. J. Martin, Elliptic partial differential equations and quasi-conformal mappings in the plane, Princeton University Press, Princeton, NJ 48 (2009). · Zbl 1182.30001
[77] K. Astala, T. Iwaniec, I. Prause, and E. Saksman, Burkholder integrals, Morrey’s problem and quasiconformal mappings, J. Amer. Math. Soc. 25 (2012), 507-531. · Zbl 1276.30038
[78] K. Astala, T. Iwaniec, I. Prause, and E. Saksman, A hunt for sharp L p -estimates and rank-one convex variational integrals, Filomat 29 (2015), 245-261. · Zbl 1474.30151
[79] D. Faraco and L. Székelyhidi Jr., Tartar’s conjecture and localization of the quasiconvex hull in R 2×2 , Acta Math. 200 (2008), 279-305. · Zbl 1357.49054
[80] A. Guerra, Extremal rank-one convex integrands and a conjecture ofŠverák, Calc. Var. Partial Differential Equations 58 (2019), Paper No. 201. · Zbl 1430.49008
[81] T. Harris, B. Kirchheim, and C.-C. Lin, Two-by-two upper triangular matrices and Morrey’s conjecture, Calc. Var. Partial Differential Equations 57 (2018), Paper No. 73. · Zbl 1401.49015
[82] S. Müller, Rank-one convexity implies quasiconvexity in diagonal matrices, Internat. Math. Res. Notices (1999), 1087-1095. · Zbl 1055.49506
[83] P. Pedregal and V.Šverák, A note on quasiconvexity and rank-one convexity for 2 × 2 matrices, J. Convex Anal. 5 (1998), 107-117. · Zbl 0918.49012
[84] G. Sebestyén and L. Székelyhidi Jr., Laminates supported on cubes, J. Convex Anal. 24 (2017), 1217-1237. · Zbl 1380.49069
[85] V.Šverák, Rank-one convexity does not imply quasiconvexity, Proc. Roy. Soc. Edinburgh Sect. A 120 (1992), 185-189. · Zbl 0777.49015
[86] J. Voss, R. J. Martin, I.-D. Ghiba, and P. Neff, Morrey’s Conjecture for the Planar Volumetric-Isochoric Split: Least Rank-One Convex Energy Functions, J. Nonlinear Sci. 32 (2022), Paper No. 76. · Zbl 1497.74004
[87] S. Alama, L. Bronsard, and X. Lamy, Spherical particle in nematic liquid crystal under an external field: the Saturn ring regime, J. Nonlinear Sci. 28 (2018), 1443-1465. · Zbl 1397.35092
[88] F. Alouges, A. Chambolle, and D. Stantejsky, The Saturn ring effect in nematic liquid crystals with external field: Effective energy and hysteresis, Arch. Ration Mech. Anal. 241 (2021), 1403-1457. · Zbl 1468.76007
[89] F. Alouges, A. Chambolle, and D. Stantejsky, Convergence to line and surface energies in nematic liquid crystal colloids with external magnetic field, arXiv:2202.10703.
[90] G. Canevari and G. Orlandi, Topological Singular Set of Vector-Valued Maps, II: Γ−convergence for Ginzburg-Landau type functionals, Arch. Ration. Mech. Anal. 241 (2021), 1065-1135. · Zbl 1467.58004
[91] I. Muševič, Nematic Liquid-Crystal Colloids, Materials 11(1):24, (2018).
[92] S. Alama, L. Bronsard, and A. Colinet, In preparation.
[93] G. Alberti, S. Baldo, and G. Orlandi, Variational convergence for functionals of Ginzburg-Landau type, Indiana Univ. Math. J. 54 (2005), 1411-1472. · Zbl 1160.35013
[94] R. Alicandro and M. Ponsiglione, Ginzburg-Landau functionals and renormalized energy: a revised Γ-convergence approach, J. Funct. Anal. 266 (2014), 4890-4907. · Zbl 1307.35287
[95] F. Bethuel, H. Brezis, and F. Hélein, Ginzburg-Landau vortices, Progress in Nonlinear Dif-ferential Equations and their Applications 13 (1994), xxviii+159. · Zbl 0802.35142
[96] A. Colinet, R. L. Jerrard, and P. Sternberg, Solutions of the Ginzburg-Landau equations with vorticity concentrating near a nondegenerate geodesic, Submitted.
[97] R. Ignat and R. L. Jerrard, Renormalized energy between vortices in some Ginzburg-Landau models on 2-dimensional Riemannian manifolds, Arch. Ration. Mech. Anal. 239 (2021), 1577-1666. · Zbl 1462.35375
[98] R. L. Jerrard, A. Montero, and P. Sternberg, Local minimizers of the Ginzburg-Landau energy with magnetic field in three dimensions, Comm. Math. Phys. 249 (2004), 549-577. · Zbl 1065.58012
[99] R. L. Jerrard and H. M. Soner, The Jacobian and the Ginzburg-Landau energy, Calc. Var. Partial Differential Equations 14 (2002), 151-191. · Zbl 1034.35025
[100] W. Allard, On the first variation of a varifold, Ann. Math. (2) 95 (1972), 417-491. · Zbl 0252.49028
[101] W. Allard and F. Almgren, On the radial behavior of minimal surfaces and the uniqueness of their tangent cones, Ann. Math. (2) 113 (1981), 215-265. · Zbl 0437.53045
[102] F. Maggi and M. Novack, Isoperimetric residues and a mesoscale flatness criterion for hypersurfaces with bounded mean curvature, arXiv:2205.02951.
[103] L. Simon, Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems, Ann. Math. (2) 118 (1983), 525-571. · Zbl 0549.35071
[104] L. Simon, Isolated singularities of extrema of geometric variational problems, in Harmonic mappings and minimal immersions, Lecture Notes in Math. 1161 (1985), 206-277. · Zbl 0583.49028
[105] L. Simon, Asymptotic behaviour of minimal graphs over exterior domains, Ann. Inst. H. Poincaré Anal. Non Linéaire 4 (1987), 231-242. · Zbl 0632.49020
[106] A. Arroyo-Rabasa, G. De Philippis, J. Hirsch, F. Rindler, and A. Skorobogatova, Higher integrability for measures satisfying a PDE constraint, arXiv:2106.03077.
[107] K. Astala, D. Faraco, A. Guerra, A. Koski, and J. Kristensen, in preparation.
[108] J. Bourgain and H. Brezis, New estimates for elliptic equations and Hodge type systems, J. Eur. Math. Soc. (JEMS) 9 (2007), 277-315. · Zbl 1176.35061
[109] D. Burkholder, Boundary Value Problems and Sharp Inequalities for Martingale Trans-forms, Ann. Probab. 12 (1984), 647-702. · Zbl 0556.60021
[110] L. De Rosa and R. Tione, On a question of D. Serre, ESAIM Control Optim. Calc. Var. 26 (2020), Paper No. 97. · Zbl 1460.26010
[111] D. Faraco and X. Zhong, Quasiconvex functions and Hessian equations, Arch. Ration. Mech. Anal. 168 (2003), 245-252. · Zbl 1047.49017
[112] I. Fonseca and S. Müller, A -Quasiconvexity, Lower Semicontinuity, and Young Measures, SIAM J. Math. Anal. 30 (1999), 1355-1390. · Zbl 0940.49014
[113] A. Guerra and B. Raiţȃ, M. Schrecker, Compensation phenomena for concentration effects via nonlinear elliptic estimates, arXiv:2112.10657.
[114] C. B. Morrey Jr., Quasi-convexity and lower semicontinuity of multiple integrals, Pacific J. Math. 2 (1952), 25-53. · Zbl 0046.10803
[115] D. Ornstein, A non-inequality for differential operators in the L 1 norm, Arch. Rational Mech. Anal. 11 (1962), 40-49. · Zbl 0106.29602
[116] D. Serre, Divergence-free positive symmetric tensors and fluid dynamics, Ann. Inst. H. Poincaré C Anal. Non Linéaire 35 (2018), 1209-1234. · Zbl 1393.35181
[117] L. Tartar, Compensated compactness and applications to partial differential equations in Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, Res. Notes in Math. 39 (1979), 136-212. · Zbl 0437.35004
[118] L. Tartar, The compensated compactness method applied to systems of conservation laws in Systems of nonlinear partial differential equations (Oxford, 1982), NATO Adv. Sci. Inst. Ser. C: Math. Phys. Sci. 111 (1983), 263-285. · Zbl 0536.35003
[119] J. Van Schaftingen, Limiting Sobolev inequalities for vector fields and canceling linear dif-ferential operators, J. Eur. Math. Soc. (JEMS) 15 (2013), 877-921. · Zbl 1284.46032
[120] J. Bourgain and T. Wolff, A remark on gradients of harmonic functions in dimension ≥ 3, Colloq. Math. 60-61 (1990), 253-260. · Zbl 0731.31006
[121] J. Cheeger, A. Naber, and D. Valtorta, Critical sets of elliptic equations, Comm. Pure Appl. Math. 68 (2015), 173-209. · Zbl 1309.35012
[122] Q. Han, Singular sets of solutions to elliptic equations, Indiana Univ. Math. J. 43 (1994), 983-1002. · Zbl 0817.35020
[123] R. Hardt and L. Simon, Nodal sets for solutions of elliptic equations, J. Differential Geom. 30 (1989), 505-522. · Zbl 0692.35005
[124] C. Kenig and Z. Zhao, Boundary unique continuation on C 1 -Dini domains and the size of the singular set, Arch. Ration. Mech. Anal. 245 (2022), 1-88. · Zbl 1540.31003
[125] C. Kenig and Z. Zhao, Expansion of harmonic functions near the boundary of Dini domains, arXiv:2107.06324. · Zbl 1516.31010
[126] A. Naber and D. Valtorta, Volume estimates on the critical sets of solutions to elliptic PDEs, Comm. Pure Appl. Math. 70 (2017), 1835-1897. · Zbl 1376.35021
[127] X. Tolsa, Unique continuation at the boundary for harmonic functions in C 1 domains and Lipschitz domains with small constant, https://doi.org/10.1002/cpa.22025. References · doi:10.1002/cpa.22025.References
[128] C. De Lellis, J. Hirsch, A. Marchese, L. Spolaor, and S. Stuvard, Area minimizing hyper-surfaces modulo p: a geometric free-boundary problem, arXiv:2105.08135.
[129] C. De Lellis, J. Hirsch, A. Marchese, L. Spolaor, and S. Stuvard, Fine structure of the singular set of area minimizing hypersurfaces modulo p, arXiv:2201.10204.
[130] C. De Lellis, J. Hirsch, A. Marchese, and S. Stuvard, Regularity of area minimizing currents mod p, Geom. Funct. Anal. 30 (2020), 1224-1336. · Zbl 1456.49032
[131] C. De Lellis, J. Hirsch, A. Marchese, and S. Stuvard, Area minimizing currents mod 2Q: linear regularity theory, Comm. Pure Appl. Math. 75 (2022), 83-127. · Zbl 1500.49026
[132] H. Federer, Geometric Measure Theory, Grundlehren Math. Wiss. 153, Springer, New York, 1969. · Zbl 0176.00801
[133] H. Federer, The singular set of area minimizing rectifiable currents with codimension one and of area minimizing flat chains modulo two with arbitrary codimension, Bull. Amer. Math. Soc. 76 (1970), 767-771. · Zbl 0194.35803
[134] L. Simon, Cylindrical tangent cones and the singular set of minimal submanifolds, J. Dif-ferential Geom. 38 (1993), 585-652. · Zbl 0819.53029
[135] J. E. Taylor, Regularity of the singular sets of two-dimensional area minimizing flat chains modulo 3 in R 3 , Invent. Math. 22 (1973), 119-159. · Zbl 0278.49046
[136] B. White, The structure of minimizing hypersurfaces mod 4, Invent. Math. 53 (1979), 45-58. · Zbl 0431.49044
[137] B. White, A regularity theorem for minimizing hypersurfaces modulo p, Geometric measure theory and the calculus of variations (Arcata, Calif., 1984), 413-427, Proc. Sympos. Pure Math., 44, Amer. Math. Soc., Providence, RI, 1986. · Zbl 0586.49027
[138] W. P. Ziemer, Integral currents mod 2, Trans. Amer. Math. Soc. 105 (1962), 496-524. References · Zbl 0136.03603
[139] O. Chodosh and F. Schulze, Uniqueness of asymptotically conical tangent flows, Duke Math. J. 170 (2021), 3601-3657. · Zbl 1489.53123
[140] T. H. Colding and W. P. Minicozzi II, Uniqueness of blowups and Lojasiewicz inequalities, Ann. of Math. (2) 182 (2015), 221-285. · Zbl 1337.53082
[141] D. Joyce, Conjectures on Bridgeland stability for Fukaya categories of Calabi-Yau mani-folds, special Lagrangians, and Lagrangian mean curvature flow, EMS Surv. Math. Sci. 2 (2015), 1-62. · Zbl 1347.53052
[142] B. Lambert, J. D. Lotay, and F. Schulze, Ancient solutions in Lagrangian mean curvature flow, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 22 (2021), 1169-1205. · Zbl 1485.53067
[143] J. D. Lotay, F. Schulze, and G. Székelyhidi, Ancient solutions and translators of Lagrangian mean curvature flow, arXiv:2204.13836.
[144] A. Neves, Singularities of Lagrangian mean curvature flow: zero-Maslov class case, Invent. Math. 168 (2007), 449-484. · Zbl 1119.53052
[145] A. Neves, Recent progress on singularities of Lagrangian mean curvature flow, Surveys in geometric analysis and relativity, Adv. Lect. Math. (ALM), 20, Int. Press, Somerville, MA, (2011), 413-438. · Zbl 1268.53073
[146] A. Neves, Finite time singularities for Lagrangian mean curvature flow, Ann. of Math. (2) 177 (2013), 1029-1076. · Zbl 1315.53074
[147] R. Schoen and J. Wolfson, Minimizing area among Lagrangian surfaces: the mapping prob-lem, J. Differential Geom. 58 (2001), 1-86. · Zbl 1052.53056
[148] F. Schulze, Uniqueness of compact tangent flows in mean curvature flow, J. Reine Angew. Math. 690 (2014), 163-172. · Zbl 1290.53066
[149] K. Smoczyk, A canonical way to deform a lagrangian submanifold, arXiv:dg-ga/9605005.
[150] A. Strominger, S.-T. Yau, and E. Zaslow, Mirror symmetry is T -duality, Nuclear Phys. B 479 (1996), 243-259. · Zbl 0896.14024
[151] R. P. Thomas, Moment maps, monodromy and mirror manifolds, Symplectic geometry and mirror symmetry (Seoul, 2000), World Sci. Publ., River Edge, NJ, (2001), 467-498. · Zbl 1076.14525
[152] R. P. Thomas and S.-T. Yau, Special Lagrangians, stable bundles and mean curvature flow, Comm. Anal. Geom. 10 (2002), 1075-1113. · Zbl 1115.53054
[153] M. Bonacini, R. Cristoferi, and I. Topaloglu, Minimality of polytopes in a nonlocal anisotropic isoperimetric problem, Nonlinear Anal. 205 (2021), Paper No. 112223. · Zbl 1458.49033
[154] M. Bonacini, R. Cristoferi, and I. Topaloglu, Riesz-type inequalities and overdetermined problems for triangles and quadrilaterals, J. Geom. Anal. 32 (2022), Paper No. 48. · Zbl 1485.49051
[155] J. A. Carrillo, S. Hittmeir, B. Volzone, and Y. Yao, Nonlinear aggregation-diffusion equa-tions: radial symmetry and long time asymptotics, Invent. Math. 218 (2019), 889-977. · Zbl 1427.35136
[156] R. Choksi, C. B. Muratov, and I. Topaloglu, An old problem resurfaces nonlocally: Gamow’s liquid drops inspire today’s research and applications, Notices Amer. Math. Soc. 64 (2017), 1275-1283. · Zbl 1376.49059
[157] R. Choksi, R. Neumayer, and I. Topaloglu, Anisotropic liquid drop models, Adv. Calc. Var. 15 (2022), 109-131. · Zbl 1491.35355
[158] I. Fragalà and B. Velichkov, Serrin-type theorems for triangles, Proc. Amer. Math. Soc. 147 (2019), 1615-1626. · Zbl 1407.35146
[159] G. Gamow, Mass defect curve and nuclear constitution, Proc. R. Soc. Lond. A 126 (1930), 632-644. · JFM 56.0762.02
[160] J. Gómez-Serrano, J. Park, J. Shi, and Y. Yao, Symmetry in stationary and uniformly rotating solutions of active scalar equations, Duke Math. J. 170 (2021), 2957-3038. · Zbl 1478.35013
[161] G. Lu and J. Zhu, An overdetermined problem in Riesz-potential and fractional Laplacian, Nonlinear Anal. 75 (2012), 3036-3048. · Zbl 1236.31004
[162] S. Biesenbach, R. Schubert, and M. G. Westdickenberg, Optimal relaxation of bump-like solutions of the one-dimensional Cahn-Hilliard equation, Comm. Partial Differential Equa-tions 47 (2022), 489-548. · Zbl 1491.35031
[163] J. Bricmont, A. Kupiainen, and J. Taskinen, Stability of Cahn-Hilliard fronts, Comm. Pure Appl. Math. 52, (1999), 839-871. · Zbl 0939.35022
[164] E. A. Carlen, M. C. Carvalho, and E. Orlandi, A simple proof of stability of fronts for the Cahn-Hilliard equation, Comm. Math. Phys. 224 (2001), 323-340. · Zbl 1019.35013
[165] P. Howard. Asymptotic behavior near transition fronts for equations of generalized Cahn-Hilliard form, Comm. Math. Phys. 269 (2007), 765-808. · Zbl 1117.35009
[166] B. Niethammer, S. Throm, and J. J. L. Velazquez, Self-similar solutions with fat tails for Smoluchowski’s coagulation equation with singular kernels, Ann. Inst. H. Poincaré C. Analyze Non Linéaire 33 (2016), 1223-1257. · Zbl 1357.35073
[167] F. Otto, S. Scholtes, and M. G. Westdickenberg, Optimal L 1 -type relaxation rates for the Cahn-Hilliard equation on the line, SIAM J. Math. Anal. 51 (2019), 4645-4682. · Zbl 1461.35058
[168] M. Allen, D. Kriventsov, and R. Neumayer, Sharp quantitative Faber-Krahn inequalities and the Alt-Caffarelli-Friedman monotonicity formula, arXiv:2107.03505.
[169] M. Allen, D. Kriventsov, and R. Neumayer, Linear stability implies nonlinear stability for Faber-Krahn type inequalities, arXiv:2107.03495. · Zbl 1519.49035
[170] M. Allen, Separation of a lower dimensional free boundary in a two-phase problem, Math. Res. Lett. 19 (2012), 1055-1074. · Zbl 1302.35458
[171] L. A. Caffarelli and L. Silvestre, An extension problem related to the fractional Laplacian, Comm. Partial Differential Equations 32 (2007), 1245-1260. · Zbl 1143.26002
[172] L. Ambrosio, C. De Lellis, and C. Mantegazza, Line energies for gradient vector fields in the plane, Calc. Var. Partial Differential Equations 9 (1999), 327-355. · Zbl 0960.49013
[173] F. Ghiraldin and X. Lamy, Optimal Besov differentiability for entropy solutions of the Eikonal equation, Comm. Pure Appl. Math. 73 (2020), 317-349. · Zbl 1437.35135
[174] P.-E. Jabin, F. Otto, and B. Perthame, Line-energy Ginzburg-Landau models: zero-energy states, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 1 (2002), 187-202. · Zbl 1072.35051
[175] X. Lamy, A. Lorent, and G. Peng, Rigidity of a non-elliptic differential inclusion related to the Aviles-Giga conjecture, Arch. Ration. Mech. Anal. 238 (2020), 383-413. · Zbl 1445.35102
[176] X. Lamy, A. Lorent, and G. Peng, Quantitative rigidity of differential inclusions in two dimensions, arXiv:2208.08526
[177] A. Lorent and G. Peng, Regularity of the eikonal equation with two vanishing entropies, Ann. Inst. H. Poincaré Anal. Non Linéaire 35 (2018), 481-516. · Zbl 1384.28007
[178] A. Lorent and G. Peng, Factorization of entropy production of the Eikonal equation and regularity, To appear in Indiana University Mathematics Journal. arXiv:2104.01467
[179] V.Šverák, On Tartar’s conjecture, Ann. Inst. H. Poincaré Anal. Non Linéaire 10 (1993), 405-412. · Zbl 0820.35022
[180] G. Alberti, A Lusin type theorem for gradients, J. Funct. Anal. 100 (1991), 110-118. · Zbl 0752.46025
[181] G. Alberti, A. Massaccesi, and A. Merlo, On tangency sets of non-involutive distributions, Paper in preparation.
[182] G. Alberti, A. Massaccesi, and E. Stepanov, On the geometric structure of currents tangent to smooth distributions, To appear in J. Differ. Geom. · Zbl 1503.58004
[183] Z. Balogh, Size of characteristic sets and functions with prescribed gradient, J. Reine Angew. Math. 564 (2003), 63-83. · Zbl 1051.53024
[184] G. De Philippis and F. Rindler, On the structure of A-free measures and applications, Ann. of Math. (2) 184 (2016), 1017-1039. · Zbl 1352.49050
[185] S. Delladio, Functions of class C 1 subject to a Legendre condition in an enhanced density set, Rev. Mat. Iberoam. 28 (2012), 127-140. · Zbl 1244.49073
[186] A. Massaccesi, Currents with coefficients in groups, applications and other problems in Geometric Measure Theory, Ph.D. Thesis (2014).
[187] A. Massaccesi, Frobenius property for integral currents and decomposition of normal cur-rents, Calculus of Variations Report 33/2014, Oberwolfach Reports 11 (2014).
[188] M. Zworski, Decomposition of normal currents, Proc. Amer. Math. Soc. 102 (1988), 831-839. · Zbl 0658.49019
[189] F. Anceschi, S. Polidoro, and M. A. Ragusa, Moser’s estimates for degenerate Kolmogorov equations with non-negative divergence lower order coefficients, Nonlinear Anal. 189 (2019), 111568. · Zbl 1425.35011
[190] J.-M. Bony, Principe du maximum, inégalite de Harnack et unicité du probléme de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier (Grenoble) 19 (1969), 277-304 xii. · Zbl 0176.09703
[191] L. Capogna, G. Citti, and G. Rea, A subelliptic analogue of Aronson-Serrin’s Harnack inequality, Math. Ann. 357 (2013), 1175-1198. · Zbl 1282.35204
[192] E. De Giorgi, Sulla differenziabilità e l’analiticità delle estremali degli integrali multipli regolari, Mem. Accad. Sci. Torino. Cl. Sci. Fis. Mat. Nat. (3) 3 (1957), 25-43. · Zbl 0084.31901
[193] H. Dietert and J. Hirsch, Regularity for rough hypoelliptic equations, Preprint (2022).
[194] F. Golse, C. Imbert, C. Mouhot, and A. F. Vasseur, Harnack inequality for kinetic Fokker-Planck equations with rough coefficients and application to the Landau equation, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 19 (2019), 253-295. · Zbl 1431.35016
[195] J. Guerand and C. Mouhot, Quantitative De Giorgi methods in kinetic theory, arXiv:2103.09646. · Zbl 1495.35109
[196] L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967), 147-171. · Zbl 0156.10701
[197] C. Imbert and L. Silvestre, The weak Harnack inequality for the Boltzmann equation without cut-off, J. Eur. Math. Soc. (JEMS) 22 (2020), 507-592. · Zbl 1473.35077
[198] J. Moser, A new proof of De Giorgi’s theorem concerning the regularity problem for elliptic differential equations, Comm. Pure Appl. Math. 13 (1960), 457-468. · Zbl 0111.09301
[199] J. Moser, On Harnack’s theorem for elliptic differential equations, Comm. Pure Appl. Math. 14 (1961), 577-591. · Zbl 0111.09302
[200] J. Moser, A Harnack inequality for parabolic differential equations, Comm. Pure Appl. Math. 17 (1964), 101-134. · Zbl 0149.06902
[201] J. Nash, Continuity of solutions of parabolic and elliptic equations, Amer. J. Math. 80 (1958), 931-954. · Zbl 0096.06902
[202] A. Pascucci and S. Polidoro, The Moser’s iterative method for a class of ultraparabolic equations, Commun. Contemp. Math. 6 (2004), 395-417. · Zbl 1096.35080
[203] Compactness results for Griffith-type energies Antonin Chambolle (joint work with Vito Crismale) References
[204] S. Almi and E. Tasso, A new proof of compactness in G(S)BD, Advances in Calculus of Variations (2022).
[205] F. Cagnetti, A. Chambolle, and L. Scardia, Korn and Poincaré-Korn inequalities for func-tions with a small jump set, Math. Ann. 383 (2022), 1179-1216. · Zbl 07566700
[206] A. Chambolle, S. Conti, and G. Francfort. Korn-Poincaré inequalities for functions with a small jump set, Indiana Univ. Math. J. 65 (2016), 1373-1399. · Zbl 1357.49151
[207] A. Chambolle and V. Crismale. Compactness and lower semicontinuity in GSBD, J. Eur. Math. Soc. (JEMS) 23 (2021), 701-719. · Zbl 1475.49018
[208] A. Chambolle and V. Crismale, Equilibrium Configurations For Nonhomogeneous Linearly Elastic Materials With Surface Discontinuities, Preprint hal-02667936, October 2021.
[209] S. Conti, M. Focardi, and F. Iurlano, Integral representation for functionals defined on SBD p in dimension two, Arch. Ration. Mech. Anal. 223 (2017), 1337-1374. · Zbl 1398.49007
[210] G. Dal Maso, Generalised functions of bounded deformation, J. Eur. Math. Soc. (JEMS) 15 (2013), 1943-1997. · Zbl 1271.49029
[211] M. Friedrich, A compactness result in GSBV p and applications to Γ-convergence for free discontinuity problems, Calc. Var. Partial Differential Equations 58 (2019), Paper No. 86. Reporter: Andrew Colinet · Zbl 1418.49043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.