×

The Allen-Cahn equation on closed manifolds. (English) Zbl 1396.53064

Authors’ abstract: We study global variational properties of the space of solutions to \(-\varepsilon^2\Delta u + W'(u)=0\) on any closed Riemannian manifold \(M\). Our techniques are inspired by recent advances in the variational theory of minimal hypersurfaces and extend a well-known analogy with the theory of phase transitions. First, we show that solutions at the lowest positive energy level are either stable or obtained by min-max and have index 1. We show that if \(\varepsilon \) is not small enough, in terms of the Cheeger constant of \(M\), then there are no interesting solutions. However, we show that the number of min-max solutions to the equation above goes to infinity as \(\varepsilon \rightarrow 0\) and their energies have sublinear growth. This result is sharp in the sense that for generic metrics the number of solutions is finite, for fixed \(\varepsilon \), as shown recently by G. Smith. We also show that the energy of the min-max solutions accumulate, as \(\varepsilon \rightarrow 0\), around limit-interfaces which are smooth embedded minimal hypersurfaces whose area with multiplicity grows sublinearly. For generic metrics with \(\operatorname{Ric}_M>0\), the limit-interface of the solutions at the lowest positive energy level is an embedded minimal hypersurface of least area in the sense of Mazet-Rosenberg. Finally, we prove that the min-max energy values are bounded from below by the widths of the area functional as defined by Marques-Neves.

MSC:

53C21 Methods of global Riemannian geometry, including PDE methods; curvature restrictions
53A10 Minimal surfaces in differential geometry, surfaces with prescribed mean curvature
49Q05 Minimal surfaces and optimization
49J35 Existence of solutions for minimax problems

References:

[1] Aiex, N.S.: Non-compactness of the space of minimal hypersurfaces. ArXiv preprint arXiv:1601.01049 (2016)
[2] Almgren, FJ, The homotopy groups of the integral cycle groups, Topology, 1, 257-299, (1962) · Zbl 0118.18503 · doi:10.1016/0040-9383(62)90016-2
[3] Ambrosetti, A.: Variational methods and nonlinear problems: classical results and recent advances. In: Topological Nonlinear Analysis. Springer, pp. 1-36 (1995) · Zbl 0824.58018
[4] Ambrosetti, A; Rabinowitz, PH, Dual variational methods in critical point theory and applications, J. Funct. Anal., 14, 349-381, (1973) · Zbl 0273.49063 · doi:10.1016/0022-1236(73)90051-7
[5] Ambrozio, L., Carlotto, A., Sharp, B.: Comparing the Morse index and the first Betti number of minimal hypersurfaces. ArXiv preprint arXiv:1601.08152 (2016) · Zbl 1385.53051
[6] Bahri, A; Berestycki, H, A perturbation method in critical point theory and applications, Trans. Am. Math. Soc., 267, 1-32, (1981) · Zbl 0476.35030 · doi:10.1090/S0002-9947-1981-0621969-9
[7] Bahri, A; Lions, P, Morse index of some MIN-MAX critical points. I. application to multiplicity results, Commun. Pure Appl. Math., 41, 1027-1037, (1988) · Zbl 0645.58013 · doi:10.1002/cpa.3160410803
[8] Brezis, H; Oswald, L, Remarks on sublinear elliptic equations, Nonlinear Anal. Theory Methods Appl., 10, 55-64, (1986) · Zbl 0593.35045 · doi:10.1016/0362-546X(86)90011-8
[9] Buchstaber, V.M., Panov, T.E.: Torus actions and their applications in topology and combinatorics. University Lecture Series, vol. 24. American Mathematical Society, Providence, RI (2002) · Zbl 1012.52021
[10] Caffarelli, L; Vasseur, A, The De Giorgi method for regularity of solutions of elliptic equations and its applications to fluid dynamics, Discrete Contin. Dyn. Syst. Ser. S, 3, 409-427, (2010) · Zbl 1210.76039 · doi:10.3934/dcdss.2010.3.409
[11] Cahn, J; Allen, S, A microscopic theory for domain wall motion and its experimental verification in fe-al alloy domain growth kinetics, J. Phys. Colloq., 38, c7-51, (1977) · doi:10.1051/jphyscol:1977709
[12] Carlotto, A.: Minimal hyperspheres of arbitrarily large Morse index. ArXiv preprint arXiv:1504.02066 (2015) · Zbl 0255.47069
[13] Cazenave, T., Haraux, A.: An Introduction to Semilinear Evolution Equations, vol. 13. Oxford University Press on Demand, Oxford (1998) · Zbl 0926.35049
[14] Chavel, I.: Eigenvalues in Riemannian Geometry, vol. 115. Academic Press, Orlando (1984) · Zbl 0551.53001
[15] Colding, TH; Minicozzi, WP, Examples of embedded minimal tori without area bounds, Int. Math. Res. Not., 1999, 1097-1100, (1999) · Zbl 0980.53084 · doi:10.1155/S1073792899000604
[16] Conner, PE; Floyd, EE, Fixed point free involutions and equivariant maps, Bull. Am. Math. Soc., 66, 416-441, (1960) · Zbl 0106.16301 · doi:10.1090/S0002-9904-1960-10492-2
[17] Dean, B, Compact embedded minimal surfaces of positive genus without area bounds, Geom. Dedicata, 102, 45-52, (2003) · Zbl 1051.53053 · doi:10.1023/B:GEOM.0000006576.88682.3b
[18] Degiovanni, M; Marzocchi, M, Limit of minimax values under \(γ \)- convergence, Electron. J. Differ. Equ., 2014, 19, (2014) · Zbl 1319.35146 · doi:10.1186/1687-1847-2014-19
[19] Dold, A, Partitions of unity in the theory of fibrations, Ann. Math., 78, 223-255, (1963) · Zbl 0203.25402 · doi:10.2307/1970341
[20] Ekeland, I; Ghoussoub, N, Selected new aspects of the calculus of variations in the large, Bull. Am. Math. Soc., 39, 207-265, (2002) · Zbl 1064.35054 · doi:10.1090/S0273-0979-02-00929-1
[21] Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions, vol. 5. CRC Press, Boca Raton (1991) · Zbl 1310.28001
[22] Fadell, ER; Rabinowitz, PH, Bifurcation for odd potential operators and an alternative topological index, J. Funct. Anal., 26, 48-67, (1977) · Zbl 0363.47029 · doi:10.1016/0022-1236(77)90015-5
[23] Fadell, ER; Rabinowitz, PH, Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Invent. Math., 45, 139-174, (1978) · Zbl 0403.57001 · doi:10.1007/BF01390270
[24] Farina, A; Sire, Y; Valdinoci, E, Stable solutions of elliptic equations on Riemannian manifolds, J. Geom. Anal., 23, 1158-1172, (2013) · Zbl 1273.53029 · doi:10.1007/s12220-011-9278-9
[25] Federer, H.: Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer, New York (1969) · Zbl 1297.49079
[26] Ghoussoub, N, Location, multiplicity and Morse indices of MIN-MAX critical points, J. Reine Angew. Math., 417, 27-76, (1991) · Zbl 0736.58011
[27] Ghoussoub, N.: Duality and Perturbation Methods in Critical Point Theory, vol. 107. Cambridge University Press, Cambridge (1993) · Zbl 0790.58002 · doi:10.1017/CBO9780511551703
[28] Gromov, M.: Dimension, nonlinear spectra and width, geometric aspects of functional analysis (1986/87), pp. 132-184, Lecture Notes in Math, 1317 (1986/87) · Zbl 0664.41019
[29] Guaraco, M.A.: Min-max for phase transitions and the existence of embedded minimal hypersurfaces. ArXiv preprint arXiv:1505.06698 (2015)
[30] Guth, L, Minimax problems related to cup powers and Steenrod squares, Geom. Funct. Anal., 18, 1917-1987, (2009) · Zbl 1190.53038 · doi:10.1007/s00039-009-0710-2
[31] Han, Q., Lin, F.: Elliptic Partial Differential Equations, vol. 1. American Mathematical Society, New York (2011) · Zbl 1210.35031
[32] Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002) · Zbl 1044.55001
[33] Hutchinson, JE; Tonegawa, Y, Convergence of phase interfaces in the van der Waals-Cahn-Hilliard theory, Calc. Var. Partial. Differ. Equ., 10, 49-84, (2000) · Zbl 1070.49026 · doi:10.1007/PL00013453
[34] Ilmanen, T, Convergence of the Allen-Cahn equation to brakke’s motion by mean curvature, J. Differ. Geom., 38, 417-461, (1993) · Zbl 0784.53035 · doi:10.4310/jdg/1214454300
[35] Ketover, D., Marques, F.C., Neves, A.: The catenoid estimate and its geometric applications. ArXiv preprint arXiv:1601.04514 (2016)
[36] Kramer, J.I.: Examples of stable embedded minimal spheres without area bounds. ArXiv preprint arXiv:0812.3841 (2008) · Zbl 1190.53038
[37] Krasnosel’skii, M.A.: Topological methods in the theory of nonlinear integral equations. Translated by A. H. Armstrong; translation edited by J. Burlak. A Pergamon Press Book, The Macmillan Co., New York (1964) · Zbl 0111.30303
[38] Lyusternik, LA; Schnirelmann, LG, Topological methods in variational problems and their application to the differential geometry of surfaces, Uspekhi Matematicheskikh Nauk, 2, 166-217, (1947) · Zbl 1446.53052
[39] Marques, FC; Neves, A, Rigidity of MIN-MAX minimal spheres in three-manifolds, Duke Math. J., 161, 2725-2752, (2012) · Zbl 1260.53079 · doi:10.1215/00127094-1813410
[40] Marques, F.C., Neves, A.: Existence of infinitely many minimal hypersurfaces in positive Ricci curvature. ArXiv preprint arXiv:1311.6501 (2013) · Zbl 0736.58011
[41] Marques, FC; Neves, A, MIN-MAX theory and the Willmore conjecture, Ann. Math. (2), 179, 683-782, (2014) · Zbl 1297.49079 · doi:10.4007/annals.2014.179.2.6
[42] Marques, F.C., Neves, A.: Morse index and multiplicity of min-max minimal hypersurfaces. ArXiv preprint arXiv:1512.06460 (2015) · Zbl 1273.53029
[43] Mazet, L., Rosenberg, H.: Minimal hypersurfaces of least area. ArXiv preprint arXiv:1503.02938 (2015) · Zbl 0403.57001
[44] Milnor, J, Construction of universal bundles, II, Ann. Math., 63, 430-436, (1956) · Zbl 0071.17401 · doi:10.2307/1970012
[45] Mizuno, M., Tonegawa, Y.: Convergence of the Allen-Cahn equation with Neumann boundary conditions. ArXiv preprint arXiv:1403.5624 (2014)
[46] Modica, L, The gradient theory of phase transitions and the minimal interface criterion, Arch. Ration. Mech. Anal., 98, 123-142, (1987) · Zbl 0616.76004 · doi:10.1007/BF00251230
[47] Pacard, F.: The role of minimal surfaces in the study of the Allen-Cahn equation. In: Geometric Analysis: Partial Differential Equations and Surfaces: UIMP-RSME Santaló Summer School Geometric Analysis, June 28-July 2, 2010. University of Granada, Granada, Spain, vol. 570, p. 137 (2012) · Zbl 0203.25402
[48] Pacard, F; Ritoré, M, From constant mean curvature hypersurfaces to the gradient theory of phase transitions, J. Differ. Geom., 64, 359-423, (2003) · Zbl 1070.58014 · doi:10.4310/jdg/1090426999
[49] Padilla, P; Tonegawa, Y, On the convergence of stable phase transitions, Commun. Pure Appl. Math., 51, 551-579, (1998) · Zbl 0955.58011 · doi:10.1002/(SICI)1097-0312(199806)51:6<551::AID-CPA1>3.0.CO;2-6
[50] Pagliardini, D.: Multiplicity of critical points for the fractional Allen-Cahn energy. ArXiv preprint arXiv:1603.01960 (2016) · Zbl 1342.35438
[51] Passaseo, D, Multiplicity of critical points for some functionals related to the minimal surfaces problem, Calc. Var. Partial Differ. Equ., 6, 105-121, (1998) · Zbl 0895.49008 · doi:10.1007/s005260050084
[52] Pisante, A., Punzo, F.: Allen-Cahn approximation of mean curvature flow in Riemannian manifolds I, uniform estimates. ArXiv preprint arXiv:1308.0569 (2013)
[53] Pitts, J.T.: Existence and Regularity of Minimal Surfaces on Riemannian Manifolds, No. 27 in Mathematical Notes. Princeton University Press, Princeton (1981)
[54] Rabinowitz, PH, Some aspects of nonlinear eigenvalue problems, Rocky Mt. J. Math., 3, 161-202, (1973) · Zbl 0255.47069 · doi:10.1216/RMJ-1973-3-2-161
[55] Rabinowitz, P.H.: Critical point theory and applications to differential equations: a survey. In: Topological Nonlinear Analysis. Springer, pp. 464-513 (1995) · Zbl 0823.58009
[56] Savin, O.: Phase transitions, minimal surfaces and a conjecture of De Giorgi. In: Current Developments in Mathematics, pp. 59-113 (2009) · Zbl 1219.35295
[57] Simon, L.: Lectures on geometric measure theory, The Australian National University. Centre for Mathematics and Its Applications, Mathematical Sciences Institute (1983) · Zbl 0546.49019
[58] Smith, G.: Bifurcation of solutions to the Allen-Cahn equation. ArXiv preprint arXiv:1311.2307 (2015) · Zbl 0593.35045
[59] Spanier, E.H.: Algebraic Topology, vol. 55. Springer, Berlin (1994) · Zbl 0810.55001
[60] Sternberg, P, The effect of a singular perturbation on nonconvex variational problems, Arch. Ration. Mech. Anal., 101, 209-260, (1988) · Zbl 0647.49021 · doi:10.1007/BF00253122
[61] tom Dieck, T.: Algebraic Topology. European Mathematical Society, Paris (2008) · Zbl 1156.55001 · doi:10.4171/048
[62] Tonegawa, Y, Applications of geometric measure theory to two-phase separation problems, Sugaku Expo., 21, 97, (2008) · Zbl 1207.35004
[63] Tonegawa, Y; Wickramasekera, N, Stable phase interfaces in the van der Waals-Cahn-Hilliard theory, Journal für die reine und angewandte Mathematik (Crelles Journal), 2012, 191-210, (2012) · Zbl 1244.49077 · doi:10.1515/CRELLE.2011.134
[64] Yang, C-T, On theorems of Borsuk-Ulam, Kakutani-Yamabe-yujobô and Dyson, II, Ann. Math., 62, 271-283, (1955) · Zbl 0067.15202 · doi:10.2307/1969681
[65] Zhou, X.: Min-max hypersurface in manifold of positive Ricci curvature. ArXiv preprint arXiv:1504.00966 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.