×

Topological singular set of vector-valued maps. II: \( \varGamma \)-convergence for Ginzburg-Landau type functionals. (English) Zbl 1467.58004

Summary: We prove a \(\varGamma \)-convergence result for a class of Ginzburg-Landau type functionals with \({\mathscr{N}} \)-well potentials, where \({\mathscr{N}}\) is a closed and \((k-2)\)-connected submanifold of \({\mathbb{R}}^m\), in arbitrary dimension. This class includes, for instance, the Landau-de Gennes free energy for nematic liquid crystals. The energy density of minimisers, subject to Dirichlet boundary conditions, converges to a generalised surface (more precisely, a flat chain with coefficients in \(\pi_{k-1}({\mathscr{N}}))\) which solves the Plateau problem in codimension \(k\). The analysis relies crucially on the set of topological singularities, that is, the operator \({\mathbf{S}}\) we introduced in the companion paper [the authors, Calc. Var. Partial Differ. Equ. 58, No. 2, Paper No. 72, 40 p. (2019; Zbl 1411.58004)].

MSC:

58C06 Set-valued and function-space-valued mappings on manifolds
49Q15 Geometric measure and integration theory, integral and normal currents in optimization
49Q20 Variational problems in a geometric measure-theoretic setting

Citations:

Zbl 1411.58004

References:

[1] Alberti, G.; Baldo, S.; Orlandi, G., Functions with prescribed singularities, J. Eur. Math. Soc. (JEMS), 5, 3, 275-311 (2003) · Zbl 1033.46028 · doi:10.1007/s10097-003-0053-5
[2] Alberti, G.; Baldo, S.; Orlandi, G., Variational convergence for functionals of Ginzburg-Landau type, Indiana Univ. Math. J., 54, 5, 1411-1472 (2005) · Zbl 1160.35013 · doi:10.1512/iumj.2005.54.2601
[3] Alicandro, R.; Ponsiglione, M., Ginzburg-Landau functionals and renormalized energy: a revised \(\Gamma \)-convergence approach, J. Funct. Anal., 266, 8, 4890-4907 (2014) · Zbl 1307.35287 · doi:10.1016/j.jfa.2014.01.024
[4] Ambrosio, L.; Soner, HM, Level set approach to mean curvature flow in arbitrary codimension, J. Differ. Geom., 43, 4, 693-737 (1996) · Zbl 0868.35046 · doi:10.4310/jdg/1214458529
[5] Bauman, P.; Park, J.; Phillips, D., Analysis of nematic liquid crystals with disclination lines, Arch. Ration. Mech. Anal., 205, 3, 795-826 (2012) · Zbl 1281.76020 · doi:10.1007/s00205-012-0530-7
[6] Bethuel, F., A characterization of maps in \({H}^1({B}^3, {S}^2)\) which can be approximated by smooth maps, Ann l’Inst Henri Poincare Non Linear Anal, 7, 4, 269-286 (1990) · Zbl 0708.58004 · doi:10.1016/S0294-1449(16)30292-X
[7] Bethuel, F., Brezis, H., Coron, J.M.: Relaxed Energies for Harmonic Maps, pp. 37-52. Birkhäuser Boston, Boston, MA (1990). doi:10.1007/978-1-4757-1080-9_3 · Zbl 0793.58011
[8] Bethuel, F., Brezis, H., Hélein, F.: Ginzburg-Landau Vortices. Progress in Nonlinear Differential Equations and their Applications, 13. Birkhäuser Boston Inc., Boston, MA (1994). doi:10.1007/978-1-4612-0287-5 · Zbl 0802.35142
[9] Bethuel, F.; Brezis, H.; Orlandi, G., Asymptotics for the Ginzburg-Landau equation in arbitrary dimensions, J. Funct. Anal., 186, 2, 432-520 (2001) · Zbl 1077.35047 · doi:10.1006/jfan.2001.3791
[10] Bethuel, F.; Demengel, F., Extensions for Sobolev mappings between manifolds, Cal. Var. Partial Differ. Equ., 3, 4, 475-491 (1995) · Zbl 0846.46021 · doi:10.1007/BF01187897
[11] Bourgain, J.; Brezis, H.; Mironescu, P., On the structure of the Sobolev space \({H}^{1/2}\) with values into the circle, C. R. l’Acad. Sci. Ser. I Math., 331, 2, 119-124 (2000) · Zbl 0970.35069 · doi:10.1016/S0764-4442(00)00513-9
[12] Bousquet, P.; Ponce, AC; Van Schaftingen, J., Density of smooth maps for fractional Sobolev spaces \({W}^{s, p}\) into \(\ell\) simply connected manifolds when \(s\ge 1\), Conflu. Math., 5, 2, 3-24 (2013) · Zbl 1314.58005 · doi:10.5802/cml.5
[13] Brezis, H.; Coron, JM; Lieb, EH, Harmonic maps with defects, Commun. Math. Phys., 107, 4, 649-705 (1986) · Zbl 0608.58016 · doi:10.1007/BF01205490
[14] Brezis, H.; Nirenberg, L., Degree theory and BMO. I. Compact manifolds without boundaries, Sel. Math. (N.S.), 1, 2, 197-263 (1995) · Zbl 0852.58010 · doi:10.1007/BF01671566
[15] Canevari, G., Biaxiality in the asymptotic analysis of a 2D Landau-de Gennes model for liquid crystals, ESAIM Control Optim. Calc. Var., 21, 1, 101-137 (2015) · Zbl 1311.35209 · doi:10.1051/cocv/2014025
[16] Canevari, G., Line defects in the small elastic constant limit of a three-dimensional Landau-de Gennes model, Arch. Ration. Mech. Anal., 223, 2, 591-676 (2017) · Zbl 1359.82022 · doi:10.1007/s00205-016-1040-9
[17] Canevari, G.; Orlandi, G., Topological singular set of vector-valued maps, I: applications to manifold-constrained Sobolev and BV spaces, Calc. Var. Partial Differ. Equ., 58, 2, 72 (2019) · Zbl 1411.58004 · doi:10.1007/s00526-019-1501-8
[18] Chemin, A.; Henrotte, F.; Remacle, JF; van Schaftingen, J., Representing Three-Dimensional Cross Fields Using Fourth Order Tensors, 89-108 (2019), Cham: Springer, Cham · Zbl 1448.15031 · doi:10.1007/978-3-030-13992-6_6
[19] Chen, YM; Struwe, M., Existence and partial regularity results for the heat flow for harmonic maps, Math. Z., 201, 1, 83-103 (1989) · Zbl 0652.58024 · doi:10.1007/BF01161997
[20] Chiron, D.: étude mathématique de modèles issus de la physique de la matière condensée. Ph.D. Thesis, Université Pierre et Marie Curie-Paris 6 (2004)
[21] Contreras, A.; Jerrard, RL, Nearly parallel vortex filaments in the 3D Ginzburg-Landau equations, Geom. Funct. Anal., 27, 5, 1161-1230 (2017) · Zbl 1391.35367 · doi:10.1007/s00039-017-0425-8
[22] Contreras, A., Lamy, X.: Singular perturbation of manifold-valued maps with anisotropic energy (2018). Preprint arXiv: 1809.05170
[23] De Gennes, PG; Prost, J., The Physics of Liquid Crystals. International Series of Monographs on Physics (1993), Oxford: Clarendon Press, Oxford
[24] Diening, L.; Stroffolini, B.; Verde, A., The \(\phi \)-harmonic approximation and the regularity of \(\phi \)-harmonic maps, J. Differ. Equ., 253, 7, 1943-1958 (2012) · Zbl 1260.35048 · doi:10.1016/j.jde.2012.06.010
[25] Federer, H.; Fleming, WH, Normal and integral currents, Ann. Math., 2, 72, 458-520 (1960) · Zbl 0187.31301 · doi:10.2307/1970227
[26] Fleming, WH, Flat chains over a finite coefficient group, Trans. Am. Math. Soc., 121, 160-186 (1966) · Zbl 0136.03602 · doi:10.1090/S0002-9947-1966-0185084-5
[27] Giaquinta, M., Modica, G., Souček, J.: Cartesian currents in the calculus of variations., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 37-38. Springer, Berlin (1998). doi:10.1007/978-3-662-06218-0. Cartesian currents · Zbl 0914.49001
[28] Golovaty, D.; Montero, JA, On minimizers of a Landau-de Gennes energy functional on planar domains, Arch. Ration. Mech. Anal., 213, 2, 447-490 (2014) · Zbl 1308.35211 · doi:10.1007/s00205-014-0731-3
[29] Hardt, R.; Kinderlehrer, D.; Lin, FH, Existence and partial regularity of static liquid crystal configurations, Commun. Math. Phys., 105, 4, 547-570 (1986) · Zbl 0611.35077 · doi:10.1007/BF01238933
[30] Hardt, R.; Lin, FH, Mappings minimizing the \(L^p\) norm of the gradient, Commun. Pure Appl. Math., 40, 5, 555-588 (1987) · Zbl 0646.49007 · doi:10.1002/cpa.3160400503
[31] Hatcher, A., Algebraic Topology (2002), Cambridge: Cambridge University Press, Cambridge · Zbl 1044.55001
[32] Hirsch, MW, Differential Topology (1976), New York: Springer, New York · Zbl 0356.57001 · doi:10.1007/978-1-4684-9449-5
[33] Hopper, CP, Partial regularity for holonomic minimisers of quasiconvex functionals, Arch. Rational Mech. Anal., 222, 1, 91-141 (2016) · Zbl 1347.49055 · doi:10.1007/s00205-016-0997-8
[34] Ignat, R., Jerrard, R.: Renormalized energy between vortices in some Ginzburg-Landau models on 2-dimensional Riemannian manifolds. Arch. Rational Mech. Anal. 239(1), 1-90, 2021. doi:10.1007/s00205-020-01598-0 · Zbl 1462.35375
[35] Ignat, R.; Nguyen, L.; Slastikov, V.; Zarnescu, A., Stability of the melting hedgehog in the Landau-de Gennes theory of nematic liquid crystals, Arch. Ration. Mech. Anal., 215, 2, 633-673 (2015) · Zbl 1308.35213 · doi:10.1007/s00205-014-0791-4
[36] Ignat, R.; Nguyen, L.; Slastikov, V.; Zarnescu, A., Stability of point defects of degree \(\pm \frac{1}{2}\) in a two-dimensional nematic liquid crystal model, Calc. Var. Partial Differ. Equ., 55, 5, 33 (2016) · Zbl 1353.82076 · doi:10.1007/s00526-016-1051-2
[37] Ignat, R.; Nguyen, L.; Slastikov, V.; Zarnescu, A., Symmetry and multiplicity of solutions in a two-dimensional Landau-de Gennes model for liquid crystals, Arch. Ration. Mech. Anal., 237, 3, 1421-1473 (2020) · Zbl 1444.76017 · doi:10.1007/s00205-020-01539-x
[38] Jerrard, RL, Lower bounds for generalized Ginzburg-Landau functionals, SIAM J. Math. Anal., 30, 4, 721-746 (1999) · Zbl 0928.35045 · doi:10.1137/S0036141097300581
[39] Jerrard, RL; Soner, HM, The Jacobian and the Ginzburg-Landau energy, Cal. Var. Partial Differ. Equ., 14, 2, 151-191 (2002) · Zbl 1034.35025 · doi:10.1007/s005260100093
[40] Lin, F.; Wang, C., Harmonic and quasi-harmonic spheres, Commun. Anal. Geom., 7, 2, 397-429 (1999) · Zbl 0934.58018 · doi:10.4310/CAG.1999.v7.n2.a9
[41] Lin, FH; Rivière, T., Complex Ginzburg-Landau equations in high dimensions and codimension two area minimizing currents, J. Eur. Math. Soc. (JEMS), 1, 3, 237-311 (1999) · Zbl 0939.35056 · doi:10.1007/s100970050008
[42] Lin, FH; Rivière, T., A quantization property for static Ginzburg-Landau vortices, Commun. Pure Appl. Math., 54, 2, 206-228 (2001) · Zbl 1033.58013 · doi:10.1002/1097-0312(200102)54:2<206::AID-CPA3>3.0.CO;2-W
[43] Majumdar, A.; Zarnescu, A., Landau-De Gennes theory of nematic liquid crystals: the Oseen-Frank limit and beyond, Arch. Ration. Mech. Anal., 196, 1, 227-280 (2010) · Zbl 1304.76007 · doi:10.1007/s00205-009-0249-2
[44] Monteil, A., Rodiac, R., Van Schaftingen, J.: Ginzburg-Landau relaxation for harmonic maps on planar domains into a general compact vacuum manifold. Preprint arXiv:2008.13512
[45] Monteil, A., Rodiac, R., Van Schaftingen, J.: Renormalised energies and renormalisable singular harmonic maps into a compact manifold on planar domains. Math. Ann. doi:10.1007/s00208-021-02204-8 · Zbl 1494.58005
[46] Nguyen, L.; Zarnescu, A., Refined approximation for minimizers of a Landau-de Gennes energy functional, Cal. Var. Partial Differ. Equ., 47, 1-2, 383-432 (2013) · Zbl 1273.35260 · doi:10.1007/s00526-012-0522-3
[47] Pakzad, MR; Rivière, T., Weak density of smooth maps for the Dirichlet energy between manifolds, Geom. Funct. Anal., 13, 1, 223-257 (2003) · Zbl 1028.58008 · doi:10.1007/s000390300006
[48] Pigati, A., Stern, D.: Minimal submanifolds from the abelian Higgs model. Preprint arXiv:1905.13726 (2019). · Zbl 1467.53025
[49] Rivière, T., Dense subsets of \(H^{1/2}(S^2, S^1)\), Ann. Global Anal. Geom., 18, 5, 517-528 (2000) · Zbl 0960.35022 · doi:10.1023/A:1006655723537
[50] Sandier, E., Lower bounds for the energy of unit vector fields and applications, J. Funct. Anal., 152, 2, 379-403 (1998) · Zbl 0908.58004 · doi:10.1006/jfan.1997.3170
[51] Sandier, É.; Serfaty, S., Vortices in the Magnetic Ginzburg-Landau Model. Progress in Nonlinear Differential Equations and their Applications (2007), Boston: Birkhäuser Boston, Inc., Boston · Zbl 1112.35002
[52] Stern, D.: Existence and limiting behavior of min-max solutions of the Ginzburg-Landau equations on compact manifolds. To appear in J. Diff. Geom. · Zbl 1472.35368
[53] Van Schaftingen, J., Approximation in Sobolev spaces by piecewise affine interpolation, J. Math. Anal. Appl., 420, 1, 40-47 (2014) · Zbl 1354.41001 · doi:10.1016/j.jmaa.2014.05.036
[54] White, B., The deformation theorem for flat chains, Acta Math., 183, 2, 255-271 (1999) · Zbl 0980.49035 · doi:10.1007/BF02392829
[55] White, B., Rectifiability of flat chains, Ann. Math. (2), 150, 1, 165-184 (1999) · Zbl 0965.49024 · doi:10.2307/121100
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.